Metamath Proof Explorer


Theorem lcd0vs

Description: A scalar zero times a functional is the zero functional. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcd0vs.h H=LHypK
lcd0vs.u U=DVecHKW
lcd0vs.r R=ScalarU
lcd0vs.z 0˙=0R
lcd0vs.c C=LCDualKW
lcd0vs.v V=BaseC
lcd0vs.t ·˙=C
lcd0vs.o O=0C
lcd0vs.k φKHLWH
lcd0vs.g φGV
Assertion lcd0vs φ0˙·˙G=O

Proof

Step Hyp Ref Expression
1 lcd0vs.h H=LHypK
2 lcd0vs.u U=DVecHKW
3 lcd0vs.r R=ScalarU
4 lcd0vs.z 0˙=0R
5 lcd0vs.c C=LCDualKW
6 lcd0vs.v V=BaseC
7 lcd0vs.t ·˙=C
8 lcd0vs.o O=0C
9 lcd0vs.k φKHLWH
10 lcd0vs.g φGV
11 eqid ScalarC=ScalarC
12 eqid 0ScalarC=0ScalarC
13 1 2 3 4 5 11 12 9 lcd0 φ0ScalarC=0˙
14 13 oveq1d φ0ScalarC·˙G=0˙·˙G
15 1 5 9 lcdlmod φCLMod
16 6 11 7 12 8 lmod0vs CLModGV0ScalarC·˙G=O
17 15 10 16 syl2anc φ0ScalarC·˙G=O
18 14 17 eqtr3d φ0˙·˙G=O