Metamath Proof Explorer


Theorem lcd0vs

Description: A scalar zero times a functional is the zero functional. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcd0vs.h H = LHyp K
lcd0vs.u U = DVecH K W
lcd0vs.r R = Scalar U
lcd0vs.z 0 ˙ = 0 R
lcd0vs.c C = LCDual K W
lcd0vs.v V = Base C
lcd0vs.t · ˙ = C
lcd0vs.o O = 0 C
lcd0vs.k φ K HL W H
lcd0vs.g φ G V
Assertion lcd0vs φ 0 ˙ · ˙ G = O

Proof

Step Hyp Ref Expression
1 lcd0vs.h H = LHyp K
2 lcd0vs.u U = DVecH K W
3 lcd0vs.r R = Scalar U
4 lcd0vs.z 0 ˙ = 0 R
5 lcd0vs.c C = LCDual K W
6 lcd0vs.v V = Base C
7 lcd0vs.t · ˙ = C
8 lcd0vs.o O = 0 C
9 lcd0vs.k φ K HL W H
10 lcd0vs.g φ G V
11 eqid Scalar C = Scalar C
12 eqid 0 Scalar C = 0 Scalar C
13 1 2 3 4 5 11 12 9 lcd0 φ 0 Scalar C = 0 ˙
14 13 oveq1d φ 0 Scalar C · ˙ G = 0 ˙ · ˙ G
15 1 5 9 lcdlmod φ C LMod
16 6 11 7 12 8 lmod0vs C LMod G V 0 Scalar C · ˙ G = O
17 15 10 16 syl2anc φ 0 Scalar C · ˙ G = O
18 14 17 eqtr3d φ 0 ˙ · ˙ G = O