Metamath Proof Explorer


Theorem lcd0vs

Description: A scalar zero times a functional is the zero functional. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcd0vs.h
|- H = ( LHyp ` K )
lcd0vs.u
|- U = ( ( DVecH ` K ) ` W )
lcd0vs.r
|- R = ( Scalar ` U )
lcd0vs.z
|- .0. = ( 0g ` R )
lcd0vs.c
|- C = ( ( LCDual ` K ) ` W )
lcd0vs.v
|- V = ( Base ` C )
lcd0vs.t
|- .x. = ( .s ` C )
lcd0vs.o
|- O = ( 0g ` C )
lcd0vs.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcd0vs.g
|- ( ph -> G e. V )
Assertion lcd0vs
|- ( ph -> ( .0. .x. G ) = O )

Proof

Step Hyp Ref Expression
1 lcd0vs.h
 |-  H = ( LHyp ` K )
2 lcd0vs.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcd0vs.r
 |-  R = ( Scalar ` U )
4 lcd0vs.z
 |-  .0. = ( 0g ` R )
5 lcd0vs.c
 |-  C = ( ( LCDual ` K ) ` W )
6 lcd0vs.v
 |-  V = ( Base ` C )
7 lcd0vs.t
 |-  .x. = ( .s ` C )
8 lcd0vs.o
 |-  O = ( 0g ` C )
9 lcd0vs.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcd0vs.g
 |-  ( ph -> G e. V )
11 eqid
 |-  ( Scalar ` C ) = ( Scalar ` C )
12 eqid
 |-  ( 0g ` ( Scalar ` C ) ) = ( 0g ` ( Scalar ` C ) )
13 1 2 3 4 5 11 12 9 lcd0
 |-  ( ph -> ( 0g ` ( Scalar ` C ) ) = .0. )
14 13 oveq1d
 |-  ( ph -> ( ( 0g ` ( Scalar ` C ) ) .x. G ) = ( .0. .x. G ) )
15 1 5 9 lcdlmod
 |-  ( ph -> C e. LMod )
16 6 11 7 12 8 lmod0vs
 |-  ( ( C e. LMod /\ G e. V ) -> ( ( 0g ` ( Scalar ` C ) ) .x. G ) = O )
17 15 10 16 syl2anc
 |-  ( ph -> ( ( 0g ` ( Scalar ` C ) ) .x. G ) = O )
18 14 17 eqtr3d
 |-  ( ph -> ( .0. .x. G ) = O )