Step |
Hyp |
Ref |
Expression |
1 |
|
lcd0vs.h |
|- H = ( LHyp ` K ) |
2 |
|
lcd0vs.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
lcd0vs.r |
|- R = ( Scalar ` U ) |
4 |
|
lcd0vs.z |
|- .0. = ( 0g ` R ) |
5 |
|
lcd0vs.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
lcd0vs.v |
|- V = ( Base ` C ) |
7 |
|
lcd0vs.t |
|- .x. = ( .s ` C ) |
8 |
|
lcd0vs.o |
|- O = ( 0g ` C ) |
9 |
|
lcd0vs.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcd0vs.g |
|- ( ph -> G e. V ) |
11 |
|
eqid |
|- ( Scalar ` C ) = ( Scalar ` C ) |
12 |
|
eqid |
|- ( 0g ` ( Scalar ` C ) ) = ( 0g ` ( Scalar ` C ) ) |
13 |
1 2 3 4 5 11 12 9
|
lcd0 |
|- ( ph -> ( 0g ` ( Scalar ` C ) ) = .0. ) |
14 |
13
|
oveq1d |
|- ( ph -> ( ( 0g ` ( Scalar ` C ) ) .x. G ) = ( .0. .x. G ) ) |
15 |
1 5 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
16 |
6 11 7 12 8
|
lmod0vs |
|- ( ( C e. LMod /\ G e. V ) -> ( ( 0g ` ( Scalar ` C ) ) .x. G ) = O ) |
17 |
15 10 16
|
syl2anc |
|- ( ph -> ( ( 0g ` ( Scalar ` C ) ) .x. G ) = O ) |
18 |
14 17
|
eqtr3d |
|- ( ph -> ( .0. .x. G ) = O ) |