| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcd0vs.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcd0vs.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcd0vs.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
lcd0vs.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
lcd0vs.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
lcd0vs.v |
⊢ 𝑉 = ( Base ‘ 𝐶 ) |
| 7 |
|
lcd0vs.t |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
| 8 |
|
lcd0vs.o |
⊢ 𝑂 = ( 0g ‘ 𝐶 ) |
| 9 |
|
lcd0vs.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lcd0vs.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 11 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
| 12 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) ) |
| 13 |
1 2 3 4 5 11 12 9
|
lcd0 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = 0 ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = ( 0 · 𝐺 ) ) |
| 15 |
1 5 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 16 |
6 11 7 12 8
|
lmod0vs |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝐺 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = 𝑂 ) |
| 17 |
15 10 16
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = 𝑂 ) |
| 18 |
14 17
|
eqtr3d |
⊢ ( 𝜑 → ( 0 · 𝐺 ) = 𝑂 ) |