Step |
Hyp |
Ref |
Expression |
1 |
|
lcdvs0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcdvs0.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcdvs0.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
4 |
|
lcdvs0.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
5 |
|
lcdvs0.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
lcdvs0.t |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
7 |
|
lcdvs0.o |
⊢ 0 = ( 0g ‘ 𝐶 ) |
8 |
|
lcdvs0.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
lcdvs0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
10 |
1 5 8
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
13 |
1 2 3 4 5 11 12 8
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝑅 ) |
14 |
9 13
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
15 |
11 6 12 7
|
lmodvs0 |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) → ( 𝑋 · 0 ) = 0 ) |
16 |
10 14 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 · 0 ) = 0 ) |