Metamath Proof Explorer


Theorem lcdsbase

Description: Base set of scalar ring for the closed kernel dual of a vector space. (Contributed by NM, 18-Mar-2015)

Ref Expression
Hypotheses lcdsbase.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdsbase.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdsbase.f 𝐹 = ( Scalar ‘ 𝑈 )
lcdsbase.l 𝐿 = ( Base ‘ 𝐹 )
lcdsbase.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdsbase.s 𝑆 = ( Scalar ‘ 𝐶 )
lcdsbase.r 𝑅 = ( Base ‘ 𝑆 )
lcdsbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lcdsbase ( 𝜑𝑅 = 𝐿 )

Proof

Step Hyp Ref Expression
1 lcdsbase.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdsbase.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdsbase.f 𝐹 = ( Scalar ‘ 𝑈 )
4 lcdsbase.l 𝐿 = ( Base ‘ 𝐹 )
5 lcdsbase.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 lcdsbase.s 𝑆 = ( Scalar ‘ 𝐶 )
7 lcdsbase.r 𝑅 = ( Base ‘ 𝑆 )
8 lcdsbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 eqid ( oppr𝐹 ) = ( oppr𝐹 )
10 1 2 3 9 5 6 8 lcdsca ( 𝜑𝑆 = ( oppr𝐹 ) )
11 10 fveq2d ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ ( oppr𝐹 ) ) )
12 9 4 opprbas 𝐿 = ( Base ‘ ( oppr𝐹 ) )
13 11 7 12 3eqtr4g ( 𝜑𝑅 = 𝐿 )