Metamath Proof Explorer


Theorem lcdsbase

Description: Base set of scalar ring for the closed kernel dual of a vector space. (Contributed by NM, 18-Mar-2015)

Ref Expression
Hypotheses lcdsbase.h
|- H = ( LHyp ` K )
lcdsbase.u
|- U = ( ( DVecH ` K ) ` W )
lcdsbase.f
|- F = ( Scalar ` U )
lcdsbase.l
|- L = ( Base ` F )
lcdsbase.c
|- C = ( ( LCDual ` K ) ` W )
lcdsbase.s
|- S = ( Scalar ` C )
lcdsbase.r
|- R = ( Base ` S )
lcdsbase.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lcdsbase
|- ( ph -> R = L )

Proof

Step Hyp Ref Expression
1 lcdsbase.h
 |-  H = ( LHyp ` K )
2 lcdsbase.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdsbase.f
 |-  F = ( Scalar ` U )
4 lcdsbase.l
 |-  L = ( Base ` F )
5 lcdsbase.c
 |-  C = ( ( LCDual ` K ) ` W )
6 lcdsbase.s
 |-  S = ( Scalar ` C )
7 lcdsbase.r
 |-  R = ( Base ` S )
8 lcdsbase.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 eqid
 |-  ( oppR ` F ) = ( oppR ` F )
10 1 2 3 9 5 6 8 lcdsca
 |-  ( ph -> S = ( oppR ` F ) )
11 10 fveq2d
 |-  ( ph -> ( Base ` S ) = ( Base ` ( oppR ` F ) ) )
12 9 4 opprbas
 |-  L = ( Base ` ( oppR ` F ) )
13 11 7 12 3eqtr4g
 |-  ( ph -> R = L )