Metamath Proof Explorer


Theorem lcdsadd

Description: Scalar addition for the closed kernel vector space dual. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses lcdsadd.h
|- H = ( LHyp ` K )
lcdsadd.u
|- U = ( ( DVecH ` K ) ` W )
lcdsadd.f
|- F = ( Scalar ` U )
lcdsadd.p
|- .+ = ( +g ` F )
lcdsadd.c
|- C = ( ( LCDual ` K ) ` W )
lcdsadd.s
|- S = ( Scalar ` C )
lcdsadd.a
|- .+b = ( +g ` S )
lcdsadd.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lcdsadd
|- ( ph -> .+b = .+ )

Proof

Step Hyp Ref Expression
1 lcdsadd.h
 |-  H = ( LHyp ` K )
2 lcdsadd.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdsadd.f
 |-  F = ( Scalar ` U )
4 lcdsadd.p
 |-  .+ = ( +g ` F )
5 lcdsadd.c
 |-  C = ( ( LCDual ` K ) ` W )
6 lcdsadd.s
 |-  S = ( Scalar ` C )
7 lcdsadd.a
 |-  .+b = ( +g ` S )
8 lcdsadd.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 eqid
 |-  ( oppR ` F ) = ( oppR ` F )
10 1 2 3 9 5 6 8 lcdsca
 |-  ( ph -> S = ( oppR ` F ) )
11 10 fveq2d
 |-  ( ph -> ( +g ` S ) = ( +g ` ( oppR ` F ) ) )
12 9 4 oppradd
 |-  .+ = ( +g ` ( oppR ` F ) )
13 11 7 12 3eqtr4g
 |-  ( ph -> .+b = .+ )