Description: Scalar addition for the closed kernel vector space dual. (Contributed by NM, 6-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcdsadd.h | |- H = ( LHyp ` K ) | |
| lcdsadd.u | |- U = ( ( DVecH ` K ) ` W ) | ||
| lcdsadd.f | |- F = ( Scalar ` U ) | ||
| lcdsadd.p | |- .+ = ( +g ` F ) | ||
| lcdsadd.c | |- C = ( ( LCDual ` K ) ` W ) | ||
| lcdsadd.s | |- S = ( Scalar ` C ) | ||
| lcdsadd.a | |- .+b = ( +g ` S ) | ||
| lcdsadd.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | ||
| Assertion | lcdsadd | |- ( ph -> .+b = .+ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lcdsadd.h | |- H = ( LHyp ` K ) | |
| 2 | lcdsadd.u | |- U = ( ( DVecH ` K ) ` W ) | |
| 3 | lcdsadd.f | |- F = ( Scalar ` U ) | |
| 4 | lcdsadd.p | |- .+ = ( +g ` F ) | |
| 5 | lcdsadd.c | |- C = ( ( LCDual ` K ) ` W ) | |
| 6 | lcdsadd.s | |- S = ( Scalar ` C ) | |
| 7 | lcdsadd.a | |- .+b = ( +g ` S ) | |
| 8 | lcdsadd.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | |
| 9 | eqid | |- ( oppR ` F ) = ( oppR ` F ) | |
| 10 | 1 2 3 9 5 6 8 | lcdsca | |- ( ph -> S = ( oppR ` F ) ) | 
| 11 | 10 | fveq2d | |- ( ph -> ( +g ` S ) = ( +g ` ( oppR ` F ) ) ) | 
| 12 | 9 4 | oppradd | |- .+ = ( +g ` ( oppR ` F ) ) | 
| 13 | 11 7 12 | 3eqtr4g | |- ( ph -> .+b = .+ ) |