Description: Scalar addition for the closed kernel vector space dual. (Contributed by NM, 6-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcdsadd.h | |- H = ( LHyp ` K ) |
|
lcdsadd.u | |- U = ( ( DVecH ` K ) ` W ) |
||
lcdsadd.f | |- F = ( Scalar ` U ) |
||
lcdsadd.p | |- .+ = ( +g ` F ) |
||
lcdsadd.c | |- C = ( ( LCDual ` K ) ` W ) |
||
lcdsadd.s | |- S = ( Scalar ` C ) |
||
lcdsadd.a | |- .+b = ( +g ` S ) |
||
lcdsadd.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
Assertion | lcdsadd | |- ( ph -> .+b = .+ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdsadd.h | |- H = ( LHyp ` K ) |
|
2 | lcdsadd.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | lcdsadd.f | |- F = ( Scalar ` U ) |
|
4 | lcdsadd.p | |- .+ = ( +g ` F ) |
|
5 | lcdsadd.c | |- C = ( ( LCDual ` K ) ` W ) |
|
6 | lcdsadd.s | |- S = ( Scalar ` C ) |
|
7 | lcdsadd.a | |- .+b = ( +g ` S ) |
|
8 | lcdsadd.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
9 | eqid | |- ( oppR ` F ) = ( oppR ` F ) |
|
10 | 1 2 3 9 5 6 8 | lcdsca | |- ( ph -> S = ( oppR ` F ) ) |
11 | 10 | fveq2d | |- ( ph -> ( +g ` S ) = ( +g ` ( oppR ` F ) ) ) |
12 | 9 4 | oppradd | |- .+ = ( +g ` ( oppR ` F ) ) |
13 | 11 7 12 | 3eqtr4g | |- ( ph -> .+b = .+ ) |