Metamath Proof Explorer


Theorem lcdsadd

Description: Scalar addition for the closed kernel vector space dual. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses lcdsadd.h H = LHyp K
lcdsadd.u U = DVecH K W
lcdsadd.f F = Scalar U
lcdsadd.p + ˙ = + F
lcdsadd.c C = LCDual K W
lcdsadd.s S = Scalar C
lcdsadd.a ˙ = + S
lcdsadd.k φ K HL W H
Assertion lcdsadd φ ˙ = + ˙

Proof

Step Hyp Ref Expression
1 lcdsadd.h H = LHyp K
2 lcdsadd.u U = DVecH K W
3 lcdsadd.f F = Scalar U
4 lcdsadd.p + ˙ = + F
5 lcdsadd.c C = LCDual K W
6 lcdsadd.s S = Scalar C
7 lcdsadd.a ˙ = + S
8 lcdsadd.k φ K HL W H
9 eqid opp r F = opp r F
10 1 2 3 9 5 6 8 lcdsca φ S = opp r F
11 10 fveq2d φ + S = + opp r F
12 9 4 oppradd + ˙ = + opp r F
13 11 7 12 3eqtr4g φ ˙ = + ˙