Metamath Proof Explorer


Theorem lcdsadd

Description: Scalar addition for the closed kernel vector space dual. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses lcdsadd.h H=LHypK
lcdsadd.u U=DVecHKW
lcdsadd.f F=ScalarU
lcdsadd.p +˙=+F
lcdsadd.c C=LCDualKW
lcdsadd.s S=ScalarC
lcdsadd.a ˙=+S
lcdsadd.k φKHLWH
Assertion lcdsadd φ˙=+˙

Proof

Step Hyp Ref Expression
1 lcdsadd.h H=LHypK
2 lcdsadd.u U=DVecHKW
3 lcdsadd.f F=ScalarU
4 lcdsadd.p +˙=+F
5 lcdsadd.c C=LCDualKW
6 lcdsadd.s S=ScalarC
7 lcdsadd.a ˙=+S
8 lcdsadd.k φKHLWH
9 eqid opprF=opprF
10 1 2 3 9 5 6 8 lcdsca φS=opprF
11 10 fveq2d φ+S=+opprF
12 9 4 oppradd +˙=+opprF
13 11 7 12 3eqtr4g φ˙=+˙