Metamath Proof Explorer


Theorem lcdsca

Description: The ring of scalars of the closed kernel dual space. (Contributed by NM, 16-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses lcdsca.h H=LHypK
lcdsca.u U=DVecHKW
lcdsca.f F=ScalarU
lcdsca.o O=opprF
lcdsca.c C=LCDualKW
lcdsca.r R=ScalarC
lcdsca.k φKHLWH
Assertion lcdsca φR=O

Proof

Step Hyp Ref Expression
1 lcdsca.h H=LHypK
2 lcdsca.u U=DVecHKW
3 lcdsca.f F=ScalarU
4 lcdsca.o O=opprF
5 lcdsca.c C=LCDualKW
6 lcdsca.r R=ScalarC
7 lcdsca.k φKHLWH
8 eqid ocHKW=ocHKW
9 eqid LFnlU=LFnlU
10 eqid LKerU=LKerU
11 eqid LDualU=LDualU
12 1 8 5 2 9 10 11 7 lcdval φC=LDualU𝑠fLFnlU|ocHKWocHKWLKerUf=LKerUf
13 12 fveq2d φScalarC=ScalarLDualU𝑠fLFnlU|ocHKWocHKWLKerUf=LKerUf
14 fvex LFnlUV
15 14 rabex fLFnlU|ocHKWocHKWLKerUf=LKerUfV
16 eqid LDualU𝑠fLFnlU|ocHKWocHKWLKerUf=LKerUf=LDualU𝑠fLFnlU|ocHKWocHKWLKerUf=LKerUf
17 eqid ScalarLDualU=ScalarLDualU
18 16 17 resssca fLFnlU|ocHKWocHKWLKerUf=LKerUfVScalarLDualU=ScalarLDualU𝑠fLFnlU|ocHKWocHKWLKerUf=LKerUf
19 15 18 ax-mp ScalarLDualU=ScalarLDualU𝑠fLFnlU|ocHKWocHKWLKerUf=LKerUf
20 13 19 eqtr4di φScalarC=ScalarLDualU
21 1 2 7 dvhlmod φULMod
22 3 4 11 17 21 ldualsca φScalarLDualU=O
23 20 22 eqtrd φScalarC=O
24 6 23 eqtrid φR=O