Metamath Proof Explorer


Theorem lcdsbase

Description: Base set of scalar ring for the closed kernel dual of a vector space. (Contributed by NM, 18-Mar-2015)

Ref Expression
Hypotheses lcdsbase.h H=LHypK
lcdsbase.u U=DVecHKW
lcdsbase.f F=ScalarU
lcdsbase.l L=BaseF
lcdsbase.c C=LCDualKW
lcdsbase.s S=ScalarC
lcdsbase.r R=BaseS
lcdsbase.k φKHLWH
Assertion lcdsbase φR=L

Proof

Step Hyp Ref Expression
1 lcdsbase.h H=LHypK
2 lcdsbase.u U=DVecHKW
3 lcdsbase.f F=ScalarU
4 lcdsbase.l L=BaseF
5 lcdsbase.c C=LCDualKW
6 lcdsbase.s S=ScalarC
7 lcdsbase.r R=BaseS
8 lcdsbase.k φKHLWH
9 eqid opprF=opprF
10 1 2 3 9 5 6 8 lcdsca φS=opprF
11 10 fveq2d φBaseS=BaseopprF
12 9 4 opprbas L=BaseopprF
13 11 7 12 3eqtr4g φR=L