Metamath Proof Explorer


Theorem lcdsbase

Description: Base set of scalar ring for the closed kernel dual of a vector space. (Contributed by NM, 18-Mar-2015)

Ref Expression
Hypotheses lcdsbase.h H = LHyp K
lcdsbase.u U = DVecH K W
lcdsbase.f F = Scalar U
lcdsbase.l L = Base F
lcdsbase.c C = LCDual K W
lcdsbase.s S = Scalar C
lcdsbase.r R = Base S
lcdsbase.k φ K HL W H
Assertion lcdsbase φ R = L

Proof

Step Hyp Ref Expression
1 lcdsbase.h H = LHyp K
2 lcdsbase.u U = DVecH K W
3 lcdsbase.f F = Scalar U
4 lcdsbase.l L = Base F
5 lcdsbase.c C = LCDual K W
6 lcdsbase.s S = Scalar C
7 lcdsbase.r R = Base S
8 lcdsbase.k φ K HL W H
9 eqid opp r F = opp r F
10 1 2 3 9 5 6 8 lcdsca φ S = opp r F
11 10 fveq2d φ Base S = Base opp r F
12 9 4 opprbas L = Base opp r F
13 11 7 12 3eqtr4g φ R = L