| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdsca.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcdsca.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
lcdsca.f |
|- F = ( Scalar ` U ) |
| 4 |
|
lcdsca.o |
|- O = ( oppR ` F ) |
| 5 |
|
lcdsca.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 6 |
|
lcdsca.r |
|- R = ( Scalar ` C ) |
| 7 |
|
lcdsca.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
| 9 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
| 10 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
| 11 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
| 12 |
1 8 5 2 9 10 11 7
|
lcdval |
|- ( ph -> C = ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) |
| 13 |
12
|
fveq2d |
|- ( ph -> ( Scalar ` C ) = ( Scalar ` ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) ) |
| 14 |
|
fvex |
|- ( LFnl ` U ) e. _V |
| 15 |
14
|
rabex |
|- { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } e. _V |
| 16 |
|
eqid |
|- ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) = ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) |
| 17 |
|
eqid |
|- ( Scalar ` ( LDual ` U ) ) = ( Scalar ` ( LDual ` U ) ) |
| 18 |
16 17
|
resssca |
|- ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } e. _V -> ( Scalar ` ( LDual ` U ) ) = ( Scalar ` ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) ) |
| 19 |
15 18
|
ax-mp |
|- ( Scalar ` ( LDual ` U ) ) = ( Scalar ` ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) |
| 20 |
13 19
|
eqtr4di |
|- ( ph -> ( Scalar ` C ) = ( Scalar ` ( LDual ` U ) ) ) |
| 21 |
1 2 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 22 |
3 4 11 17 21
|
ldualsca |
|- ( ph -> ( Scalar ` ( LDual ` U ) ) = O ) |
| 23 |
20 22
|
eqtrd |
|- ( ph -> ( Scalar ` C ) = O ) |
| 24 |
6 23
|
eqtrid |
|- ( ph -> R = O ) |