Metamath Proof Explorer


Theorem lcdsca

Description: The ring of scalars of the closed kernel dual space. (Contributed by NM, 16-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses lcdsca.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdsca.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdsca.f 𝐹 = ( Scalar ‘ 𝑈 )
lcdsca.o 𝑂 = ( oppr𝐹 )
lcdsca.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdsca.r 𝑅 = ( Scalar ‘ 𝐶 )
lcdsca.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lcdsca ( 𝜑𝑅 = 𝑂 )

Proof

Step Hyp Ref Expression
1 lcdsca.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdsca.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdsca.f 𝐹 = ( Scalar ‘ 𝑈 )
4 lcdsca.o 𝑂 = ( oppr𝐹 )
5 lcdsca.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 lcdsca.r 𝑅 = ( Scalar ‘ 𝐶 )
7 lcdsca.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
9 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
10 eqid ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 )
11 eqid ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 )
12 1 8 5 2 9 10 11 7 lcdval ( 𝜑𝐶 = ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) )
13 12 fveq2d ( 𝜑 → ( Scalar ‘ 𝐶 ) = ( Scalar ‘ ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) ) )
14 fvex ( LFnl ‘ 𝑈 ) ∈ V
15 14 rabex { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ∈ V
16 eqid ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) = ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } )
17 eqid ( Scalar ‘ ( LDual ‘ 𝑈 ) ) = ( Scalar ‘ ( LDual ‘ 𝑈 ) )
18 16 17 resssca ( { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ∈ V → ( Scalar ‘ ( LDual ‘ 𝑈 ) ) = ( Scalar ‘ ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) ) )
19 15 18 ax-mp ( Scalar ‘ ( LDual ‘ 𝑈 ) ) = ( Scalar ‘ ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) )
20 13 19 eqtr4di ( 𝜑 → ( Scalar ‘ 𝐶 ) = ( Scalar ‘ ( LDual ‘ 𝑈 ) ) )
21 1 2 7 dvhlmod ( 𝜑𝑈 ∈ LMod )
22 3 4 11 17 21 ldualsca ( 𝜑 → ( Scalar ‘ ( LDual ‘ 𝑈 ) ) = 𝑂 )
23 20 22 eqtrd ( 𝜑 → ( Scalar ‘ 𝐶 ) = 𝑂 )
24 6 23 syl5eq ( 𝜑𝑅 = 𝑂 )