| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdsca.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcdsca.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcdsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
lcdsca.o |
⊢ 𝑂 = ( oppr ‘ 𝐹 ) |
| 5 |
|
lcdsca.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
lcdsca.r |
⊢ 𝑅 = ( Scalar ‘ 𝐶 ) |
| 7 |
|
lcdsca.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
| 10 |
|
eqid |
⊢ ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 ) |
| 11 |
|
eqid |
⊢ ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 ) |
| 12 |
1 8 5 2 9 10 11 7
|
lcdval |
⊢ ( 𝜑 → 𝐶 = ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( Scalar ‘ 𝐶 ) = ( Scalar ‘ ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) ) ) |
| 14 |
|
fvex |
⊢ ( LFnl ‘ 𝑈 ) ∈ V |
| 15 |
14
|
rabex |
⊢ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ∈ V |
| 16 |
|
eqid |
⊢ ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) = ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) |
| 17 |
|
eqid |
⊢ ( Scalar ‘ ( LDual ‘ 𝑈 ) ) = ( Scalar ‘ ( LDual ‘ 𝑈 ) ) |
| 18 |
16 17
|
resssca |
⊢ ( { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ∈ V → ( Scalar ‘ ( LDual ‘ 𝑈 ) ) = ( Scalar ‘ ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) ) ) |
| 19 |
15 18
|
ax-mp |
⊢ ( Scalar ‘ ( LDual ‘ 𝑈 ) ) = ( Scalar ‘ ( ( LDual ‘ 𝑈 ) ↾s { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) ) |
| 20 |
13 19
|
eqtr4di |
⊢ ( 𝜑 → ( Scalar ‘ 𝐶 ) = ( Scalar ‘ ( LDual ‘ 𝑈 ) ) ) |
| 21 |
1 2 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 22 |
3 4 11 17 21
|
ldualsca |
⊢ ( 𝜑 → ( Scalar ‘ ( LDual ‘ 𝑈 ) ) = 𝑂 ) |
| 23 |
20 22
|
eqtrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝐶 ) = 𝑂 ) |
| 24 |
6 23
|
eqtrid |
⊢ ( 𝜑 → 𝑅 = 𝑂 ) |