Step |
Hyp |
Ref |
Expression |
1 |
|
lcdsadd.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcdsadd.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcdsadd.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
4 |
|
lcdsadd.p |
⊢ + = ( +g ‘ 𝐹 ) |
5 |
|
lcdsadd.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
lcdsadd.s |
⊢ 𝑆 = ( Scalar ‘ 𝐶 ) |
7 |
|
lcdsadd.a |
⊢ ✚ = ( +g ‘ 𝑆 ) |
8 |
|
lcdsadd.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
eqid |
⊢ ( oppr ‘ 𝐹 ) = ( oppr ‘ 𝐹 ) |
10 |
1 2 3 9 5 6 8
|
lcdsca |
⊢ ( 𝜑 → 𝑆 = ( oppr ‘ 𝐹 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ ( oppr ‘ 𝐹 ) ) ) |
12 |
9 4
|
oppradd |
⊢ + = ( +g ‘ ( oppr ‘ 𝐹 ) ) |
13 |
11 7 12
|
3eqtr4g |
⊢ ( 𝜑 → ✚ = + ) |