Metamath Proof Explorer


Theorem lcdsadd

Description: Scalar addition for the closed kernel vector space dual. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses lcdsadd.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdsadd.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdsadd.f 𝐹 = ( Scalar ‘ 𝑈 )
lcdsadd.p + = ( +g𝐹 )
lcdsadd.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdsadd.s 𝑆 = ( Scalar ‘ 𝐶 )
lcdsadd.a = ( +g𝑆 )
lcdsadd.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lcdsadd ( 𝜑 = + )

Proof

Step Hyp Ref Expression
1 lcdsadd.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdsadd.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdsadd.f 𝐹 = ( Scalar ‘ 𝑈 )
4 lcdsadd.p + = ( +g𝐹 )
5 lcdsadd.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 lcdsadd.s 𝑆 = ( Scalar ‘ 𝐶 )
7 lcdsadd.a = ( +g𝑆 )
8 lcdsadd.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 eqid ( oppr𝐹 ) = ( oppr𝐹 )
10 1 2 3 9 5 6 8 lcdsca ( 𝜑𝑆 = ( oppr𝐹 ) )
11 10 fveq2d ( 𝜑 → ( +g𝑆 ) = ( +g ‘ ( oppr𝐹 ) ) )
12 9 4 oppradd + = ( +g ‘ ( oppr𝐹 ) )
13 11 7 12 3eqtr4g ( 𝜑 = + )