| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdsadd.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcdsadd.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcdsadd.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
lcdsadd.p |
⊢ + = ( +g ‘ 𝐹 ) |
| 5 |
|
lcdsadd.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
lcdsadd.s |
⊢ 𝑆 = ( Scalar ‘ 𝐶 ) |
| 7 |
|
lcdsadd.a |
⊢ ✚ = ( +g ‘ 𝑆 ) |
| 8 |
|
lcdsadd.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
eqid |
⊢ ( oppr ‘ 𝐹 ) = ( oppr ‘ 𝐹 ) |
| 10 |
1 2 3 9 5 6 8
|
lcdsca |
⊢ ( 𝜑 → 𝑆 = ( oppr ‘ 𝐹 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ ( oppr ‘ 𝐹 ) ) ) |
| 12 |
9 4
|
oppradd |
⊢ + = ( +g ‘ ( oppr ‘ 𝐹 ) ) |
| 13 |
11 7 12
|
3eqtr4g |
⊢ ( 𝜑 → ✚ = + ) |