| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdsadd.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lcdsadd.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lcdsadd.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | lcdsadd.p | ⊢  +   =  ( +g ‘ 𝐹 ) | 
						
							| 5 |  | lcdsadd.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | lcdsadd.s | ⊢ 𝑆  =  ( Scalar ‘ 𝐶 ) | 
						
							| 7 |  | lcdsadd.a | ⊢  ✚   =  ( +g ‘ 𝑆 ) | 
						
							| 8 |  | lcdsadd.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | eqid | ⊢ ( oppr ‘ 𝐹 )  =  ( oppr ‘ 𝐹 ) | 
						
							| 10 | 1 2 3 9 5 6 8 | lcdsca | ⊢ ( 𝜑  →  𝑆  =  ( oppr ‘ 𝐹 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝜑  →  ( +g ‘ 𝑆 )  =  ( +g ‘ ( oppr ‘ 𝐹 ) ) ) | 
						
							| 12 | 9 4 | oppradd | ⊢  +   =  ( +g ‘ ( oppr ‘ 𝐹 ) ) | 
						
							| 13 | 11 7 12 | 3eqtr4g | ⊢ ( 𝜑  →   ✚   =   +  ) |