Step |
Hyp |
Ref |
Expression |
1 |
|
lcdsmul.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcdsmul.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcdsmul.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
4 |
|
lcdsmul.l |
⊢ 𝐿 = ( Base ‘ 𝐹 ) |
5 |
|
lcdsmul.t |
⊢ · = ( .r ‘ 𝐹 ) |
6 |
|
lcdsmul.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
lcdsmul.s |
⊢ 𝑆 = ( Scalar ‘ 𝐶 ) |
8 |
|
lcdsmul.m |
⊢ ∙ = ( .r ‘ 𝑆 ) |
9 |
|
lcdsmul.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcdsmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐿 ) |
11 |
|
lcdsmul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐿 ) |
12 |
|
eqid |
⊢ ( oppr ‘ 𝐹 ) = ( oppr ‘ 𝐹 ) |
13 |
1 2 3 12 6 7 9
|
lcdsca |
⊢ ( 𝜑 → 𝑆 = ( oppr ‘ 𝐹 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ ( oppr ‘ 𝐹 ) ) ) |
15 |
8 14
|
syl5eq |
⊢ ( 𝜑 → ∙ = ( .r ‘ ( oppr ‘ 𝐹 ) ) ) |
16 |
15
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ∙ 𝑌 ) = ( 𝑋 ( .r ‘ ( oppr ‘ 𝐹 ) ) 𝑌 ) ) |
17 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝐹 ) ) = ( .r ‘ ( oppr ‘ 𝐹 ) ) |
18 |
4 5 12 17
|
opprmul |
⊢ ( 𝑋 ( .r ‘ ( oppr ‘ 𝐹 ) ) 𝑌 ) = ( 𝑌 · 𝑋 ) |
19 |
16 18
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑋 ∙ 𝑌 ) = ( 𝑌 · 𝑋 ) ) |