Metamath Proof Explorer


Theorem lcdsmul

Description: Scalar multiplication for the closed kernel vector space dual. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdsmul.h
|- H = ( LHyp ` K )
lcdsmul.u
|- U = ( ( DVecH ` K ) ` W )
lcdsmul.f
|- F = ( Scalar ` U )
lcdsmul.l
|- L = ( Base ` F )
lcdsmul.t
|- .x. = ( .r ` F )
lcdsmul.c
|- C = ( ( LCDual ` K ) ` W )
lcdsmul.s
|- S = ( Scalar ` C )
lcdsmul.m
|- .xb = ( .r ` S )
lcdsmul.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcdsmul.x
|- ( ph -> X e. L )
lcdsmul.y
|- ( ph -> Y e. L )
Assertion lcdsmul
|- ( ph -> ( X .xb Y ) = ( Y .x. X ) )

Proof

Step Hyp Ref Expression
1 lcdsmul.h
 |-  H = ( LHyp ` K )
2 lcdsmul.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdsmul.f
 |-  F = ( Scalar ` U )
4 lcdsmul.l
 |-  L = ( Base ` F )
5 lcdsmul.t
 |-  .x. = ( .r ` F )
6 lcdsmul.c
 |-  C = ( ( LCDual ` K ) ` W )
7 lcdsmul.s
 |-  S = ( Scalar ` C )
8 lcdsmul.m
 |-  .xb = ( .r ` S )
9 lcdsmul.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcdsmul.x
 |-  ( ph -> X e. L )
11 lcdsmul.y
 |-  ( ph -> Y e. L )
12 eqid
 |-  ( oppR ` F ) = ( oppR ` F )
13 1 2 3 12 6 7 9 lcdsca
 |-  ( ph -> S = ( oppR ` F ) )
14 13 fveq2d
 |-  ( ph -> ( .r ` S ) = ( .r ` ( oppR ` F ) ) )
15 8 14 syl5eq
 |-  ( ph -> .xb = ( .r ` ( oppR ` F ) ) )
16 15 oveqd
 |-  ( ph -> ( X .xb Y ) = ( X ( .r ` ( oppR ` F ) ) Y ) )
17 eqid
 |-  ( .r ` ( oppR ` F ) ) = ( .r ` ( oppR ` F ) )
18 4 5 12 17 opprmul
 |-  ( X ( .r ` ( oppR ` F ) ) Y ) = ( Y .x. X )
19 16 18 eqtrdi
 |-  ( ph -> ( X .xb Y ) = ( Y .x. X ) )