Step |
Hyp |
Ref |
Expression |
1 |
|
lcdsmul.h |
|- H = ( LHyp ` K ) |
2 |
|
lcdsmul.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
lcdsmul.f |
|- F = ( Scalar ` U ) |
4 |
|
lcdsmul.l |
|- L = ( Base ` F ) |
5 |
|
lcdsmul.t |
|- .x. = ( .r ` F ) |
6 |
|
lcdsmul.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
lcdsmul.s |
|- S = ( Scalar ` C ) |
8 |
|
lcdsmul.m |
|- .xb = ( .r ` S ) |
9 |
|
lcdsmul.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcdsmul.x |
|- ( ph -> X e. L ) |
11 |
|
lcdsmul.y |
|- ( ph -> Y e. L ) |
12 |
|
eqid |
|- ( oppR ` F ) = ( oppR ` F ) |
13 |
1 2 3 12 6 7 9
|
lcdsca |
|- ( ph -> S = ( oppR ` F ) ) |
14 |
13
|
fveq2d |
|- ( ph -> ( .r ` S ) = ( .r ` ( oppR ` F ) ) ) |
15 |
8 14
|
syl5eq |
|- ( ph -> .xb = ( .r ` ( oppR ` F ) ) ) |
16 |
15
|
oveqd |
|- ( ph -> ( X .xb Y ) = ( X ( .r ` ( oppR ` F ) ) Y ) ) |
17 |
|
eqid |
|- ( .r ` ( oppR ` F ) ) = ( .r ` ( oppR ` F ) ) |
18 |
4 5 12 17
|
opprmul |
|- ( X ( .r ` ( oppR ` F ) ) Y ) = ( Y .x. X ) |
19 |
16 18
|
eqtrdi |
|- ( ph -> ( X .xb Y ) = ( Y .x. X ) ) |