| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdsmul.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcdsmul.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
lcdsmul.f |
|- F = ( Scalar ` U ) |
| 4 |
|
lcdsmul.l |
|- L = ( Base ` F ) |
| 5 |
|
lcdsmul.t |
|- .x. = ( .r ` F ) |
| 6 |
|
lcdsmul.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 7 |
|
lcdsmul.s |
|- S = ( Scalar ` C ) |
| 8 |
|
lcdsmul.m |
|- .xb = ( .r ` S ) |
| 9 |
|
lcdsmul.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
lcdsmul.x |
|- ( ph -> X e. L ) |
| 11 |
|
lcdsmul.y |
|- ( ph -> Y e. L ) |
| 12 |
|
eqid |
|- ( oppR ` F ) = ( oppR ` F ) |
| 13 |
1 2 3 12 6 7 9
|
lcdsca |
|- ( ph -> S = ( oppR ` F ) ) |
| 14 |
13
|
fveq2d |
|- ( ph -> ( .r ` S ) = ( .r ` ( oppR ` F ) ) ) |
| 15 |
8 14
|
eqtrid |
|- ( ph -> .xb = ( .r ` ( oppR ` F ) ) ) |
| 16 |
15
|
oveqd |
|- ( ph -> ( X .xb Y ) = ( X ( .r ` ( oppR ` F ) ) Y ) ) |
| 17 |
|
eqid |
|- ( .r ` ( oppR ` F ) ) = ( .r ` ( oppR ` F ) ) |
| 18 |
4 5 12 17
|
opprmul |
|- ( X ( .r ` ( oppR ` F ) ) Y ) = ( Y .x. X ) |
| 19 |
16 18
|
eqtrdi |
|- ( ph -> ( X .xb Y ) = ( Y .x. X ) ) |