| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdvs.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcdvs.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
lcdvs.d |
|- D = ( LDual ` U ) |
| 4 |
|
lcdvs.t |
|- .x. = ( .s ` D ) |
| 5 |
|
lcdvs.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 6 |
|
lcdvs.m |
|- .xb = ( .s ` C ) |
| 7 |
|
lcdvs.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
| 9 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
| 10 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
| 11 |
1 8 5 2 9 10 3 7
|
lcdval |
|- ( ph -> C = ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) |
| 12 |
11
|
fveq2d |
|- ( ph -> ( .s ` C ) = ( .s ` ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) ) |
| 13 |
|
fvex |
|- ( LFnl ` U ) e. _V |
| 14 |
13
|
rabex |
|- { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } e. _V |
| 15 |
|
eqid |
|- ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) = ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) |
| 16 |
15 4
|
ressvsca |
|- ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } e. _V -> .x. = ( .s ` ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) ) |
| 17 |
14 16
|
ax-mp |
|- .x. = ( .s ` ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) |
| 18 |
12 6 17
|
3eqtr4g |
|- ( ph -> .xb = .x. ) |