Step |
Hyp |
Ref |
Expression |
1 |
|
lcdvsval.h |
|- H = ( LHyp ` K ) |
2 |
|
lcdvsval.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
lcdvsval.v |
|- V = ( Base ` U ) |
4 |
|
lcdvsval.s |
|- S = ( Scalar ` U ) |
5 |
|
lcdvsval.r |
|- R = ( Base ` S ) |
6 |
|
lcdvsval.t |
|- .x. = ( .r ` S ) |
7 |
|
lcdvsval.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
lcdvsval.f |
|- F = ( Base ` C ) |
9 |
|
lcdvsval.m |
|- .xb = ( .s ` C ) |
10 |
|
lcdvsval.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
11 |
|
lcdvsval.x |
|- ( ph -> X e. R ) |
12 |
|
lcdvsval.g |
|- ( ph -> G e. F ) |
13 |
|
lcdvsval.a |
|- ( ph -> A e. V ) |
14 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
15 |
|
eqid |
|- ( .s ` ( LDual ` U ) ) = ( .s ` ( LDual ` U ) ) |
16 |
1 2 14 15 7 9 10
|
lcdvs |
|- ( ph -> .xb = ( .s ` ( LDual ` U ) ) ) |
17 |
16
|
oveqd |
|- ( ph -> ( X .xb G ) = ( X ( .s ` ( LDual ` U ) ) G ) ) |
18 |
17
|
fveq1d |
|- ( ph -> ( ( X .xb G ) ` A ) = ( ( X ( .s ` ( LDual ` U ) ) G ) ` A ) ) |
19 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
20 |
1 2 10
|
dvhlmod |
|- ( ph -> U e. LMod ) |
21 |
1 7 8 2 19 10 12
|
lcdvbaselfl |
|- ( ph -> G e. ( LFnl ` U ) ) |
22 |
19 3 4 5 6 14 15 20 11 21 13
|
ldualvsval |
|- ( ph -> ( ( X ( .s ` ( LDual ` U ) ) G ) ` A ) = ( ( G ` A ) .x. X ) ) |
23 |
18 22
|
eqtrd |
|- ( ph -> ( ( X .xb G ) ` A ) = ( ( G ` A ) .x. X ) ) |