Metamath Proof Explorer


Theorem lcdvsval

Description: Value of scalar product operation value for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses lcdvsval.h
|- H = ( LHyp ` K )
lcdvsval.u
|- U = ( ( DVecH ` K ) ` W )
lcdvsval.v
|- V = ( Base ` U )
lcdvsval.s
|- S = ( Scalar ` U )
lcdvsval.r
|- R = ( Base ` S )
lcdvsval.t
|- .x. = ( .r ` S )
lcdvsval.c
|- C = ( ( LCDual ` K ) ` W )
lcdvsval.f
|- F = ( Base ` C )
lcdvsval.m
|- .xb = ( .s ` C )
lcdvsval.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcdvsval.x
|- ( ph -> X e. R )
lcdvsval.g
|- ( ph -> G e. F )
lcdvsval.a
|- ( ph -> A e. V )
Assertion lcdvsval
|- ( ph -> ( ( X .xb G ) ` A ) = ( ( G ` A ) .x. X ) )

Proof

Step Hyp Ref Expression
1 lcdvsval.h
 |-  H = ( LHyp ` K )
2 lcdvsval.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdvsval.v
 |-  V = ( Base ` U )
4 lcdvsval.s
 |-  S = ( Scalar ` U )
5 lcdvsval.r
 |-  R = ( Base ` S )
6 lcdvsval.t
 |-  .x. = ( .r ` S )
7 lcdvsval.c
 |-  C = ( ( LCDual ` K ) ` W )
8 lcdvsval.f
 |-  F = ( Base ` C )
9 lcdvsval.m
 |-  .xb = ( .s ` C )
10 lcdvsval.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
11 lcdvsval.x
 |-  ( ph -> X e. R )
12 lcdvsval.g
 |-  ( ph -> G e. F )
13 lcdvsval.a
 |-  ( ph -> A e. V )
14 eqid
 |-  ( LDual ` U ) = ( LDual ` U )
15 eqid
 |-  ( .s ` ( LDual ` U ) ) = ( .s ` ( LDual ` U ) )
16 1 2 14 15 7 9 10 lcdvs
 |-  ( ph -> .xb = ( .s ` ( LDual ` U ) ) )
17 16 oveqd
 |-  ( ph -> ( X .xb G ) = ( X ( .s ` ( LDual ` U ) ) G ) )
18 17 fveq1d
 |-  ( ph -> ( ( X .xb G ) ` A ) = ( ( X ( .s ` ( LDual ` U ) ) G ) ` A ) )
19 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
20 1 2 10 dvhlmod
 |-  ( ph -> U e. LMod )
21 1 7 8 2 19 10 12 lcdvbaselfl
 |-  ( ph -> G e. ( LFnl ` U ) )
22 19 3 4 5 6 14 15 20 11 21 13 ldualvsval
 |-  ( ph -> ( ( X ( .s ` ( LDual ` U ) ) G ) ` A ) = ( ( G ` A ) .x. X ) )
23 18 22 eqtrd
 |-  ( ph -> ( ( X .xb G ) ` A ) = ( ( G ` A ) .x. X ) )