Step |
Hyp |
Ref |
Expression |
1 |
|
lcdvsval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcdvsval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcdvsval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
lcdvsval.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
5 |
|
lcdvsval.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
6 |
|
lcdvsval.t |
⊢ · = ( .r ‘ 𝑆 ) |
7 |
|
lcdvsval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
lcdvsval.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
9 |
|
lcdvsval.m |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
10 |
|
lcdvsval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
lcdvsval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
12 |
|
lcdvsval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
13 |
|
lcdvsval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
14 |
|
eqid |
⊢ ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) = ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) |
16 |
1 2 14 15 7 9 10
|
lcdvs |
⊢ ( 𝜑 → ∙ = ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) ) |
17 |
16
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ∙ 𝐺 ) = ( 𝑋 ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) 𝐺 ) ) |
18 |
17
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ∙ 𝐺 ) ‘ 𝐴 ) = ( ( 𝑋 ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) 𝐺 ) ‘ 𝐴 ) ) |
19 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
20 |
1 2 10
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
21 |
1 7 8 2 19 10 12
|
lcdvbaselfl |
⊢ ( 𝜑 → 𝐺 ∈ ( LFnl ‘ 𝑈 ) ) |
22 |
19 3 4 5 6 14 15 20 11 21 13
|
ldualvsval |
⊢ ( 𝜑 → ( ( 𝑋 ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) 𝐺 ) ‘ 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) · 𝑋 ) ) |
23 |
18 22
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ∙ 𝐺 ) ‘ 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) · 𝑋 ) ) |