Metamath Proof Explorer


Theorem lcdvsval

Description: Value of scalar product operation value for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses lcdvsval.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdvsval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdvsval.v 𝑉 = ( Base ‘ 𝑈 )
lcdvsval.s 𝑆 = ( Scalar ‘ 𝑈 )
lcdvsval.r 𝑅 = ( Base ‘ 𝑆 )
lcdvsval.t · = ( .r𝑆 )
lcdvsval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdvsval.f 𝐹 = ( Base ‘ 𝐶 )
lcdvsval.m = ( ·𝑠𝐶 )
lcdvsval.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcdvsval.x ( 𝜑𝑋𝑅 )
lcdvsval.g ( 𝜑𝐺𝐹 )
lcdvsval.a ( 𝜑𝐴𝑉 )
Assertion lcdvsval ( 𝜑 → ( ( 𝑋 𝐺 ) ‘ 𝐴 ) = ( ( 𝐺𝐴 ) · 𝑋 ) )

Proof

Step Hyp Ref Expression
1 lcdvsval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdvsval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdvsval.v 𝑉 = ( Base ‘ 𝑈 )
4 lcdvsval.s 𝑆 = ( Scalar ‘ 𝑈 )
5 lcdvsval.r 𝑅 = ( Base ‘ 𝑆 )
6 lcdvsval.t · = ( .r𝑆 )
7 lcdvsval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 lcdvsval.f 𝐹 = ( Base ‘ 𝐶 )
9 lcdvsval.m = ( ·𝑠𝐶 )
10 lcdvsval.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 lcdvsval.x ( 𝜑𝑋𝑅 )
12 lcdvsval.g ( 𝜑𝐺𝐹 )
13 lcdvsval.a ( 𝜑𝐴𝑉 )
14 eqid ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 )
15 eqid ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) = ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) )
16 1 2 14 15 7 9 10 lcdvs ( 𝜑 = ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) )
17 16 oveqd ( 𝜑 → ( 𝑋 𝐺 ) = ( 𝑋 ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) 𝐺 ) )
18 17 fveq1d ( 𝜑 → ( ( 𝑋 𝐺 ) ‘ 𝐴 ) = ( ( 𝑋 ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) 𝐺 ) ‘ 𝐴 ) )
19 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
20 1 2 10 dvhlmod ( 𝜑𝑈 ∈ LMod )
21 1 7 8 2 19 10 12 lcdvbaselfl ( 𝜑𝐺 ∈ ( LFnl ‘ 𝑈 ) )
22 19 3 4 5 6 14 15 20 11 21 13 ldualvsval ( 𝜑 → ( ( 𝑋 ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) 𝐺 ) ‘ 𝐴 ) = ( ( 𝐺𝐴 ) · 𝑋 ) )
23 18 22 eqtrd ( 𝜑 → ( ( 𝑋 𝐺 ) ‘ 𝐴 ) = ( ( 𝐺𝐴 ) · 𝑋 ) )