Metamath Proof Explorer


Theorem lcdvscl

Description: The scalar product operation value is a functional. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdvscl.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdvscl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdvscl.s 𝑆 = ( Scalar ‘ 𝑈 )
lcdvscl.r 𝑅 = ( Base ‘ 𝑆 )
lcdvscl.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdvscl.v 𝑉 = ( Base ‘ 𝐶 )
lcdvscl.t · = ( ·𝑠𝐶 )
lcdvscl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcdvscl.x ( 𝜑𝑋𝑅 )
lcdvscl.g ( 𝜑𝐺𝑉 )
Assertion lcdvscl ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 lcdvscl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdvscl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdvscl.s 𝑆 = ( Scalar ‘ 𝑈 )
4 lcdvscl.r 𝑅 = ( Base ‘ 𝑆 )
5 lcdvscl.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 lcdvscl.v 𝑉 = ( Base ‘ 𝐶 )
7 lcdvscl.t · = ( ·𝑠𝐶 )
8 lcdvscl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 lcdvscl.x ( 𝜑𝑋𝑅 )
10 lcdvscl.g ( 𝜑𝐺𝑉 )
11 1 5 8 lcdlmod ( 𝜑𝐶 ∈ LMod )
12 eqid ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 )
13 eqid ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) )
14 1 2 3 4 5 12 13 8 lcdsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝑅 )
15 9 14 eleqtrrd ( 𝜑𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
16 6 12 7 13 lmodvscl ( ( 𝐶 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝐺𝑉 ) → ( 𝑋 · 𝐺 ) ∈ 𝑉 )
17 11 15 10 16 syl3anc ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝑉 )