| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdvscl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcdvscl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcdvscl.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
lcdvscl.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
| 5 |
|
lcdvscl.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
lcdvscl.v |
⊢ 𝑉 = ( Base ‘ 𝐶 ) |
| 7 |
|
lcdvscl.t |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
| 8 |
|
lcdvscl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
lcdvscl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
| 10 |
|
lcdvscl.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 11 |
1 5 8
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 12 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
| 14 |
1 2 3 4 5 12 13 8
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝑅 ) |
| 15 |
9 14
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 16 |
6 12 7 13
|
lmodvscl |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝐺 ∈ 𝑉 ) → ( 𝑋 · 𝐺 ) ∈ 𝑉 ) |
| 17 |
11 15 10 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝐺 ) ∈ 𝑉 ) |