Metamath Proof Explorer


Theorem lcdvscl

Description: The scalar product operation value is a functional. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdvscl.h H = LHyp K
lcdvscl.u U = DVecH K W
lcdvscl.s S = Scalar U
lcdvscl.r R = Base S
lcdvscl.c C = LCDual K W
lcdvscl.v V = Base C
lcdvscl.t · ˙ = C
lcdvscl.k φ K HL W H
lcdvscl.x φ X R
lcdvscl.g φ G V
Assertion lcdvscl φ X · ˙ G V

Proof

Step Hyp Ref Expression
1 lcdvscl.h H = LHyp K
2 lcdvscl.u U = DVecH K W
3 lcdvscl.s S = Scalar U
4 lcdvscl.r R = Base S
5 lcdvscl.c C = LCDual K W
6 lcdvscl.v V = Base C
7 lcdvscl.t · ˙ = C
8 lcdvscl.k φ K HL W H
9 lcdvscl.x φ X R
10 lcdvscl.g φ G V
11 1 5 8 lcdlmod φ C LMod
12 eqid Scalar C = Scalar C
13 eqid Base Scalar C = Base Scalar C
14 1 2 3 4 5 12 13 8 lcdsbase φ Base Scalar C = R
15 9 14 eleqtrrd φ X Base Scalar C
16 6 12 7 13 lmodvscl C LMod X Base Scalar C G V X · ˙ G V
17 11 15 10 16 syl3anc φ X · ˙ G V