Metamath Proof Explorer


Theorem lcdvscl

Description: The scalar product operation value is a functional. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdvscl.h H=LHypK
lcdvscl.u U=DVecHKW
lcdvscl.s S=ScalarU
lcdvscl.r R=BaseS
lcdvscl.c C=LCDualKW
lcdvscl.v V=BaseC
lcdvscl.t ·˙=C
lcdvscl.k φKHLWH
lcdvscl.x φXR
lcdvscl.g φGV
Assertion lcdvscl φX·˙GV

Proof

Step Hyp Ref Expression
1 lcdvscl.h H=LHypK
2 lcdvscl.u U=DVecHKW
3 lcdvscl.s S=ScalarU
4 lcdvscl.r R=BaseS
5 lcdvscl.c C=LCDualKW
6 lcdvscl.v V=BaseC
7 lcdvscl.t ·˙=C
8 lcdvscl.k φKHLWH
9 lcdvscl.x φXR
10 lcdvscl.g φGV
11 1 5 8 lcdlmod φCLMod
12 eqid ScalarC=ScalarC
13 eqid BaseScalarC=BaseScalarC
14 1 2 3 4 5 12 13 8 lcdsbase φBaseScalarC=R
15 9 14 eleqtrrd φXBaseScalarC
16 6 12 7 13 lmodvscl CLModXBaseScalarCGVX·˙GV
17 11 15 10 16 syl3anc φX·˙GV