| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdvscl.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lcdvscl.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | lcdvscl.s |  |-  S = ( Scalar ` U ) | 
						
							| 4 |  | lcdvscl.r |  |-  R = ( Base ` S ) | 
						
							| 5 |  | lcdvscl.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | lcdvscl.v |  |-  V = ( Base ` C ) | 
						
							| 7 |  | lcdvscl.t |  |-  .x. = ( .s ` C ) | 
						
							| 8 |  | lcdvscl.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | lcdvscl.x |  |-  ( ph -> X e. R ) | 
						
							| 10 |  | lcdvscl.g |  |-  ( ph -> G e. V ) | 
						
							| 11 | 1 5 8 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 12 |  | eqid |  |-  ( Scalar ` C ) = ( Scalar ` C ) | 
						
							| 13 |  | eqid |  |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) | 
						
							| 14 | 1 2 3 4 5 12 13 8 | lcdsbase |  |-  ( ph -> ( Base ` ( Scalar ` C ) ) = R ) | 
						
							| 15 | 9 14 | eleqtrrd |  |-  ( ph -> X e. ( Base ` ( Scalar ` C ) ) ) | 
						
							| 16 | 6 12 7 13 | lmodvscl |  |-  ( ( C e. LMod /\ X e. ( Base ` ( Scalar ` C ) ) /\ G e. V ) -> ( X .x. G ) e. V ) | 
						
							| 17 | 11 15 10 16 | syl3anc |  |-  ( ph -> ( X .x. G ) e. V ) |