Metamath Proof Explorer


Theorem lcdvscl

Description: The scalar product operation value is a functional. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdvscl.h
|- H = ( LHyp ` K )
lcdvscl.u
|- U = ( ( DVecH ` K ) ` W )
lcdvscl.s
|- S = ( Scalar ` U )
lcdvscl.r
|- R = ( Base ` S )
lcdvscl.c
|- C = ( ( LCDual ` K ) ` W )
lcdvscl.v
|- V = ( Base ` C )
lcdvscl.t
|- .x. = ( .s ` C )
lcdvscl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcdvscl.x
|- ( ph -> X e. R )
lcdvscl.g
|- ( ph -> G e. V )
Assertion lcdvscl
|- ( ph -> ( X .x. G ) e. V )

Proof

Step Hyp Ref Expression
1 lcdvscl.h
 |-  H = ( LHyp ` K )
2 lcdvscl.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdvscl.s
 |-  S = ( Scalar ` U )
4 lcdvscl.r
 |-  R = ( Base ` S )
5 lcdvscl.c
 |-  C = ( ( LCDual ` K ) ` W )
6 lcdvscl.v
 |-  V = ( Base ` C )
7 lcdvscl.t
 |-  .x. = ( .s ` C )
8 lcdvscl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 lcdvscl.x
 |-  ( ph -> X e. R )
10 lcdvscl.g
 |-  ( ph -> G e. V )
11 1 5 8 lcdlmod
 |-  ( ph -> C e. LMod )
12 eqid
 |-  ( Scalar ` C ) = ( Scalar ` C )
13 eqid
 |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) )
14 1 2 3 4 5 12 13 8 lcdsbase
 |-  ( ph -> ( Base ` ( Scalar ` C ) ) = R )
15 9 14 eleqtrrd
 |-  ( ph -> X e. ( Base ` ( Scalar ` C ) ) )
16 6 12 7 13 lmodvscl
 |-  ( ( C e. LMod /\ X e. ( Base ` ( Scalar ` C ) ) /\ G e. V ) -> ( X .x. G ) e. V )
17 11 15 10 16 syl3anc
 |-  ( ph -> ( X .x. G ) e. V )