Metamath Proof Explorer


Theorem lcdlssvscl

Description: Closure of scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdlssvscl.h
|- H = ( LHyp ` K )
lcdlssvscl.u
|- U = ( ( DVecH ` K ) ` W )
lcdlssvscl.f
|- F = ( Scalar ` U )
lcdlssvscl.r
|- R = ( Base ` F )
lcdlssvscl.c
|- C = ( ( LCDual ` K ) ` W )
lcdlssvscl.v
|- V = ( Base ` C )
lcdlssvscl.t
|- .x. = ( .s ` C )
lcdlssvscl.s
|- S = ( LSubSp ` C )
lcdlssvscl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcdlssvscl.l
|- ( ph -> L e. S )
lcdlssvscl.x
|- ( ph -> X e. R )
lcdlssvscl.y
|- ( ph -> Y e. L )
Assertion lcdlssvscl
|- ( ph -> ( X .x. Y ) e. L )

Proof

Step Hyp Ref Expression
1 lcdlssvscl.h
 |-  H = ( LHyp ` K )
2 lcdlssvscl.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdlssvscl.f
 |-  F = ( Scalar ` U )
4 lcdlssvscl.r
 |-  R = ( Base ` F )
5 lcdlssvscl.c
 |-  C = ( ( LCDual ` K ) ` W )
6 lcdlssvscl.v
 |-  V = ( Base ` C )
7 lcdlssvscl.t
 |-  .x. = ( .s ` C )
8 lcdlssvscl.s
 |-  S = ( LSubSp ` C )
9 lcdlssvscl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcdlssvscl.l
 |-  ( ph -> L e. S )
11 lcdlssvscl.x
 |-  ( ph -> X e. R )
12 lcdlssvscl.y
 |-  ( ph -> Y e. L )
13 1 5 9 lcdlmod
 |-  ( ph -> C e. LMod )
14 eqid
 |-  ( Scalar ` C ) = ( Scalar ` C )
15 eqid
 |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) )
16 1 2 3 4 5 14 15 9 lcdsbase
 |-  ( ph -> ( Base ` ( Scalar ` C ) ) = R )
17 11 16 eleqtrrd
 |-  ( ph -> X e. ( Base ` ( Scalar ` C ) ) )
18 14 7 15 8 lssvscl
 |-  ( ( ( C e. LMod /\ L e. S ) /\ ( X e. ( Base ` ( Scalar ` C ) ) /\ Y e. L ) ) -> ( X .x. Y ) e. L )
19 13 10 17 12 18 syl22anc
 |-  ( ph -> ( X .x. Y ) e. L )