Step |
Hyp |
Ref |
Expression |
1 |
|
lcdlssvscl.h |
|- H = ( LHyp ` K ) |
2 |
|
lcdlssvscl.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
lcdlssvscl.f |
|- F = ( Scalar ` U ) |
4 |
|
lcdlssvscl.r |
|- R = ( Base ` F ) |
5 |
|
lcdlssvscl.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
lcdlssvscl.v |
|- V = ( Base ` C ) |
7 |
|
lcdlssvscl.t |
|- .x. = ( .s ` C ) |
8 |
|
lcdlssvscl.s |
|- S = ( LSubSp ` C ) |
9 |
|
lcdlssvscl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcdlssvscl.l |
|- ( ph -> L e. S ) |
11 |
|
lcdlssvscl.x |
|- ( ph -> X e. R ) |
12 |
|
lcdlssvscl.y |
|- ( ph -> Y e. L ) |
13 |
1 5 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
14 |
|
eqid |
|- ( Scalar ` C ) = ( Scalar ` C ) |
15 |
|
eqid |
|- ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) |
16 |
1 2 3 4 5 14 15 9
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` C ) ) = R ) |
17 |
11 16
|
eleqtrrd |
|- ( ph -> X e. ( Base ` ( Scalar ` C ) ) ) |
18 |
14 7 15 8
|
lssvscl |
|- ( ( ( C e. LMod /\ L e. S ) /\ ( X e. ( Base ` ( Scalar ` C ) ) /\ Y e. L ) ) -> ( X .x. Y ) e. L ) |
19 |
13 10 17 12 18
|
syl22anc |
|- ( ph -> ( X .x. Y ) e. L ) |