Metamath Proof Explorer


Theorem lcdlssvscl

Description: Closure of scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdlssvscl.h H = LHyp K
lcdlssvscl.u U = DVecH K W
lcdlssvscl.f F = Scalar U
lcdlssvscl.r R = Base F
lcdlssvscl.c C = LCDual K W
lcdlssvscl.v V = Base C
lcdlssvscl.t · ˙ = C
lcdlssvscl.s S = LSubSp C
lcdlssvscl.k φ K HL W H
lcdlssvscl.l φ L S
lcdlssvscl.x φ X R
lcdlssvscl.y φ Y L
Assertion lcdlssvscl φ X · ˙ Y L

Proof

Step Hyp Ref Expression
1 lcdlssvscl.h H = LHyp K
2 lcdlssvscl.u U = DVecH K W
3 lcdlssvscl.f F = Scalar U
4 lcdlssvscl.r R = Base F
5 lcdlssvscl.c C = LCDual K W
6 lcdlssvscl.v V = Base C
7 lcdlssvscl.t · ˙ = C
8 lcdlssvscl.s S = LSubSp C
9 lcdlssvscl.k φ K HL W H
10 lcdlssvscl.l φ L S
11 lcdlssvscl.x φ X R
12 lcdlssvscl.y φ Y L
13 1 5 9 lcdlmod φ C LMod
14 eqid Scalar C = Scalar C
15 eqid Base Scalar C = Base Scalar C
16 1 2 3 4 5 14 15 9 lcdsbase φ Base Scalar C = R
17 11 16 eleqtrrd φ X Base Scalar C
18 14 7 15 8 lssvscl C LMod L S X Base Scalar C Y L X · ˙ Y L
19 13 10 17 12 18 syl22anc φ X · ˙ Y L