Metamath Proof Explorer


Theorem lcdlssvscl

Description: Closure of scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdlssvscl.h H=LHypK
lcdlssvscl.u U=DVecHKW
lcdlssvscl.f F=ScalarU
lcdlssvscl.r R=BaseF
lcdlssvscl.c C=LCDualKW
lcdlssvscl.v V=BaseC
lcdlssvscl.t ·˙=C
lcdlssvscl.s S=LSubSpC
lcdlssvscl.k φKHLWH
lcdlssvscl.l φLS
lcdlssvscl.x φXR
lcdlssvscl.y φYL
Assertion lcdlssvscl φX·˙YL

Proof

Step Hyp Ref Expression
1 lcdlssvscl.h H=LHypK
2 lcdlssvscl.u U=DVecHKW
3 lcdlssvscl.f F=ScalarU
4 lcdlssvscl.r R=BaseF
5 lcdlssvscl.c C=LCDualKW
6 lcdlssvscl.v V=BaseC
7 lcdlssvscl.t ·˙=C
8 lcdlssvscl.s S=LSubSpC
9 lcdlssvscl.k φKHLWH
10 lcdlssvscl.l φLS
11 lcdlssvscl.x φXR
12 lcdlssvscl.y φYL
13 1 5 9 lcdlmod φCLMod
14 eqid ScalarC=ScalarC
15 eqid BaseScalarC=BaseScalarC
16 1 2 3 4 5 14 15 9 lcdsbase φBaseScalarC=R
17 11 16 eleqtrrd φXBaseScalarC
18 14 7 15 8 lssvscl CLModLSXBaseScalarCYLX·˙YL
19 13 10 17 12 18 syl22anc φX·˙YL