Metamath Proof Explorer


Theorem lcdvsass

Description: Associative law for scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdvsass.h H = LHyp K
lcdvsass.u U = DVecH K W
lcdvsass.r R = Scalar U
lcdvsass.l L = Base R
lcdvsass.t · ˙ = R
lcdvsass.d C = LCDual K W
lcdvsass.f F = Base C
lcdvsass.s ˙ = C
lcdvsass.k φ K HL W H
lcdvsass.x φ X L
lcdvsass.y φ Y L
lcdvsass.g φ G F
Assertion lcdvsass φ Y · ˙ X ˙ G = X ˙ Y ˙ G

Proof

Step Hyp Ref Expression
1 lcdvsass.h H = LHyp K
2 lcdvsass.u U = DVecH K W
3 lcdvsass.r R = Scalar U
4 lcdvsass.l L = Base R
5 lcdvsass.t · ˙ = R
6 lcdvsass.d C = LCDual K W
7 lcdvsass.f F = Base C
8 lcdvsass.s ˙ = C
9 lcdvsass.k φ K HL W H
10 lcdvsass.x φ X L
11 lcdvsass.y φ Y L
12 lcdvsass.g φ G F
13 eqid Scalar C = Scalar C
14 eqid Scalar C = Scalar C
15 1 2 3 4 5 6 13 14 9 10 11 lcdsmul φ X Scalar C Y = Y · ˙ X
16 15 oveq1d φ X Scalar C Y ˙ G = Y · ˙ X ˙ G
17 1 6 9 lcdlmod φ C LMod
18 eqid Base Scalar C = Base Scalar C
19 1 2 3 4 6 13 18 9 lcdsbase φ Base Scalar C = L
20 10 19 eleqtrrd φ X Base Scalar C
21 11 19 eleqtrrd φ Y Base Scalar C
22 7 13 8 18 14 lmodvsass C LMod X Base Scalar C Y Base Scalar C G F X Scalar C Y ˙ G = X ˙ Y ˙ G
23 17 20 21 12 22 syl13anc φ X Scalar C Y ˙ G = X ˙ Y ˙ G
24 16 23 eqtr3d φ Y · ˙ X ˙ G = X ˙ Y ˙ G