Metamath Proof Explorer


Theorem lcdvsass

Description: Associative law for scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdvsass.h H=LHypK
lcdvsass.u U=DVecHKW
lcdvsass.r R=ScalarU
lcdvsass.l L=BaseR
lcdvsass.t ·˙=R
lcdvsass.d C=LCDualKW
lcdvsass.f F=BaseC
lcdvsass.s ˙=C
lcdvsass.k φKHLWH
lcdvsass.x φXL
lcdvsass.y φYL
lcdvsass.g φGF
Assertion lcdvsass φY·˙X˙G=X˙Y˙G

Proof

Step Hyp Ref Expression
1 lcdvsass.h H=LHypK
2 lcdvsass.u U=DVecHKW
3 lcdvsass.r R=ScalarU
4 lcdvsass.l L=BaseR
5 lcdvsass.t ·˙=R
6 lcdvsass.d C=LCDualKW
7 lcdvsass.f F=BaseC
8 lcdvsass.s ˙=C
9 lcdvsass.k φKHLWH
10 lcdvsass.x φXL
11 lcdvsass.y φYL
12 lcdvsass.g φGF
13 eqid ScalarC=ScalarC
14 eqid ScalarC=ScalarC
15 1 2 3 4 5 6 13 14 9 10 11 lcdsmul φXScalarCY=Y·˙X
16 15 oveq1d φXScalarCY˙G=Y·˙X˙G
17 1 6 9 lcdlmod φCLMod
18 eqid BaseScalarC=BaseScalarC
19 1 2 3 4 6 13 18 9 lcdsbase φBaseScalarC=L
20 10 19 eleqtrrd φXBaseScalarC
21 11 19 eleqtrrd φYBaseScalarC
22 7 13 8 18 14 lmodvsass CLModXBaseScalarCYBaseScalarCGFXScalarCY˙G=X˙Y˙G
23 17 20 21 12 22 syl13anc φXScalarCY˙G=X˙Y˙G
24 16 23 eqtr3d φY·˙X˙G=X˙Y˙G