| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdvsass.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcdvsass.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcdvsass.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
lcdvsass.l |
⊢ 𝐿 = ( Base ‘ 𝑅 ) |
| 5 |
|
lcdvsass.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 6 |
|
lcdvsass.d |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
lcdvsass.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
| 8 |
|
lcdvsass.s |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
| 9 |
|
lcdvsass.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lcdvsass.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐿 ) |
| 11 |
|
lcdvsass.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐿 ) |
| 12 |
|
lcdvsass.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 13 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
| 14 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝐶 ) ) = ( .r ‘ ( Scalar ‘ 𝐶 ) ) |
| 15 |
1 2 3 4 5 6 13 14 9 10 11
|
lcdsmul |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ ( Scalar ‘ 𝐶 ) ) 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ( .r ‘ ( Scalar ‘ 𝐶 ) ) 𝑌 ) ∙ 𝐺 ) = ( ( 𝑌 · 𝑋 ) ∙ 𝐺 ) ) |
| 17 |
1 6 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 18 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
| 19 |
1 2 3 4 6 13 18 9
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐿 ) |
| 20 |
10 19
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 21 |
11 19
|
eleqtrrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 22 |
7 13 8 18 14
|
lmodvsass |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝐺 ∈ 𝐹 ) ) → ( ( 𝑋 ( .r ‘ ( Scalar ‘ 𝐶 ) ) 𝑌 ) ∙ 𝐺 ) = ( 𝑋 ∙ ( 𝑌 ∙ 𝐺 ) ) ) |
| 23 |
17 20 21 12 22
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 ( .r ‘ ( Scalar ‘ 𝐶 ) ) 𝑌 ) ∙ 𝐺 ) = ( 𝑋 ∙ ( 𝑌 ∙ 𝐺 ) ) ) |
| 24 |
16 23
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑌 · 𝑋 ) ∙ 𝐺 ) = ( 𝑋 ∙ ( 𝑌 ∙ 𝐺 ) ) ) |