Metamath Proof Explorer


Theorem lcdvsass

Description: Associative law for scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdvsass.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdvsass.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdvsass.r 𝑅 = ( Scalar ‘ 𝑈 )
lcdvsass.l 𝐿 = ( Base ‘ 𝑅 )
lcdvsass.t · = ( .r𝑅 )
lcdvsass.d 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdvsass.f 𝐹 = ( Base ‘ 𝐶 )
lcdvsass.s = ( ·𝑠𝐶 )
lcdvsass.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcdvsass.x ( 𝜑𝑋𝐿 )
lcdvsass.y ( 𝜑𝑌𝐿 )
lcdvsass.g ( 𝜑𝐺𝐹 )
Assertion lcdvsass ( 𝜑 → ( ( 𝑌 · 𝑋 ) 𝐺 ) = ( 𝑋 ( 𝑌 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 lcdvsass.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdvsass.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdvsass.r 𝑅 = ( Scalar ‘ 𝑈 )
4 lcdvsass.l 𝐿 = ( Base ‘ 𝑅 )
5 lcdvsass.t · = ( .r𝑅 )
6 lcdvsass.d 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 lcdvsass.f 𝐹 = ( Base ‘ 𝐶 )
8 lcdvsass.s = ( ·𝑠𝐶 )
9 lcdvsass.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcdvsass.x ( 𝜑𝑋𝐿 )
11 lcdvsass.y ( 𝜑𝑌𝐿 )
12 lcdvsass.g ( 𝜑𝐺𝐹 )
13 eqid ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 )
14 eqid ( .r ‘ ( Scalar ‘ 𝐶 ) ) = ( .r ‘ ( Scalar ‘ 𝐶 ) )
15 1 2 3 4 5 6 13 14 9 10 11 lcdsmul ( 𝜑 → ( 𝑋 ( .r ‘ ( Scalar ‘ 𝐶 ) ) 𝑌 ) = ( 𝑌 · 𝑋 ) )
16 15 oveq1d ( 𝜑 → ( ( 𝑋 ( .r ‘ ( Scalar ‘ 𝐶 ) ) 𝑌 ) 𝐺 ) = ( ( 𝑌 · 𝑋 ) 𝐺 ) )
17 1 6 9 lcdlmod ( 𝜑𝐶 ∈ LMod )
18 eqid ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) )
19 1 2 3 4 6 13 18 9 lcdsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐿 )
20 10 19 eleqtrrd ( 𝜑𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
21 11 19 eleqtrrd ( 𝜑𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
22 7 13 8 18 14 lmodvsass ( ( 𝐶 ∈ LMod ∧ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝑌 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ 𝐺𝐹 ) ) → ( ( 𝑋 ( .r ‘ ( Scalar ‘ 𝐶 ) ) 𝑌 ) 𝐺 ) = ( 𝑋 ( 𝑌 𝐺 ) ) )
23 17 20 21 12 22 syl13anc ( 𝜑 → ( ( 𝑋 ( .r ‘ ( Scalar ‘ 𝐶 ) ) 𝑌 ) 𝐺 ) = ( 𝑋 ( 𝑌 𝐺 ) ) )
24 16 23 eqtr3d ( 𝜑 → ( ( 𝑌 · 𝑋 ) 𝐺 ) = ( 𝑋 ( 𝑌 𝐺 ) ) )