Step |
Hyp |
Ref |
Expression |
1 |
|
lcdvsass.h |
|- H = ( LHyp ` K ) |
2 |
|
lcdvsass.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
lcdvsass.r |
|- R = ( Scalar ` U ) |
4 |
|
lcdvsass.l |
|- L = ( Base ` R ) |
5 |
|
lcdvsass.t |
|- .x. = ( .r ` R ) |
6 |
|
lcdvsass.d |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
lcdvsass.f |
|- F = ( Base ` C ) |
8 |
|
lcdvsass.s |
|- .xb = ( .s ` C ) |
9 |
|
lcdvsass.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcdvsass.x |
|- ( ph -> X e. L ) |
11 |
|
lcdvsass.y |
|- ( ph -> Y e. L ) |
12 |
|
lcdvsass.g |
|- ( ph -> G e. F ) |
13 |
|
eqid |
|- ( Scalar ` C ) = ( Scalar ` C ) |
14 |
|
eqid |
|- ( .r ` ( Scalar ` C ) ) = ( .r ` ( Scalar ` C ) ) |
15 |
1 2 3 4 5 6 13 14 9 10 11
|
lcdsmul |
|- ( ph -> ( X ( .r ` ( Scalar ` C ) ) Y ) = ( Y .x. X ) ) |
16 |
15
|
oveq1d |
|- ( ph -> ( ( X ( .r ` ( Scalar ` C ) ) Y ) .xb G ) = ( ( Y .x. X ) .xb G ) ) |
17 |
1 6 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
18 |
|
eqid |
|- ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) |
19 |
1 2 3 4 6 13 18 9
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` C ) ) = L ) |
20 |
10 19
|
eleqtrrd |
|- ( ph -> X e. ( Base ` ( Scalar ` C ) ) ) |
21 |
11 19
|
eleqtrrd |
|- ( ph -> Y e. ( Base ` ( Scalar ` C ) ) ) |
22 |
7 13 8 18 14
|
lmodvsass |
|- ( ( C e. LMod /\ ( X e. ( Base ` ( Scalar ` C ) ) /\ Y e. ( Base ` ( Scalar ` C ) ) /\ G e. F ) ) -> ( ( X ( .r ` ( Scalar ` C ) ) Y ) .xb G ) = ( X .xb ( Y .xb G ) ) ) |
23 |
17 20 21 12 22
|
syl13anc |
|- ( ph -> ( ( X ( .r ` ( Scalar ` C ) ) Y ) .xb G ) = ( X .xb ( Y .xb G ) ) ) |
24 |
16 23
|
eqtr3d |
|- ( ph -> ( ( Y .x. X ) .xb G ) = ( X .xb ( Y .xb G ) ) ) |