Metamath Proof Explorer


Theorem lcd0

Description: The zero scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcd0.h H = LHyp K
lcd0.u U = DVecH K W
lcd0.f F = Scalar U
lcd0.z 0 ˙ = 0 F
lcd0.c C = LCDual K W
lcd0.s S = Scalar C
lcd0.o O = 0 S
lcd0.k φ K HL W H
Assertion lcd0 φ O = 0 ˙

Proof

Step Hyp Ref Expression
1 lcd0.h H = LHyp K
2 lcd0.u U = DVecH K W
3 lcd0.f F = Scalar U
4 lcd0.z 0 ˙ = 0 F
5 lcd0.c C = LCDual K W
6 lcd0.s S = Scalar C
7 lcd0.o O = 0 S
8 lcd0.k φ K HL W H
9 eqid opp r F = opp r F
10 1 2 3 9 5 6 8 lcdsca φ S = opp r F
11 10 fveq2d φ 0 S = 0 opp r F
12 9 4 oppr0 0 ˙ = 0 opp r F
13 11 7 12 3eqtr4g φ O = 0 ˙