Metamath Proof Explorer


Theorem lcd0

Description: The zero scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcd0.h H=LHypK
lcd0.u U=DVecHKW
lcd0.f F=ScalarU
lcd0.z 0˙=0F
lcd0.c C=LCDualKW
lcd0.s S=ScalarC
lcd0.o O=0S
lcd0.k φKHLWH
Assertion lcd0 φO=0˙

Proof

Step Hyp Ref Expression
1 lcd0.h H=LHypK
2 lcd0.u U=DVecHKW
3 lcd0.f F=ScalarU
4 lcd0.z 0˙=0F
5 lcd0.c C=LCDualKW
6 lcd0.s S=ScalarC
7 lcd0.o O=0S
8 lcd0.k φKHLWH
9 eqid opprF=opprF
10 1 2 3 9 5 6 8 lcdsca φS=opprF
11 10 fveq2d φ0S=0opprF
12 9 4 oppr0 0˙=0opprF
13 11 7 12 3eqtr4g φO=0˙