Metamath Proof Explorer


Theorem lcd1

Description: The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcd1.h H = LHyp K
lcd1.u U = DVecH K W
lcd1.f F = Scalar U
lcd1.j 1 ˙ = 1 F
lcd1.c C = LCDual K W
lcd1.s S = Scalar C
lcd1.i I = 1 S
lcd1.k φ K HL W H
Assertion lcd1 φ I = 1 ˙

Proof

Step Hyp Ref Expression
1 lcd1.h H = LHyp K
2 lcd1.u U = DVecH K W
3 lcd1.f F = Scalar U
4 lcd1.j 1 ˙ = 1 F
5 lcd1.c C = LCDual K W
6 lcd1.s S = Scalar C
7 lcd1.i I = 1 S
8 lcd1.k φ K HL W H
9 eqid opp r F = opp r F
10 1 2 3 9 5 6 8 lcdsca φ S = opp r F
11 10 fveq2d φ 1 S = 1 opp r F
12 9 4 oppr1 1 ˙ = 1 opp r F
13 11 7 12 3eqtr4g φ I = 1 ˙