Metamath Proof Explorer


Theorem lcd1

Description: The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcd1.h H=LHypK
lcd1.u U=DVecHKW
lcd1.f F=ScalarU
lcd1.j 1˙=1F
lcd1.c C=LCDualKW
lcd1.s S=ScalarC
lcd1.i I=1S
lcd1.k φKHLWH
Assertion lcd1 φI=1˙

Proof

Step Hyp Ref Expression
1 lcd1.h H=LHypK
2 lcd1.u U=DVecHKW
3 lcd1.f F=ScalarU
4 lcd1.j 1˙=1F
5 lcd1.c C=LCDualKW
6 lcd1.s S=ScalarC
7 lcd1.i I=1S
8 lcd1.k φKHLWH
9 eqid opprF=opprF
10 1 2 3 9 5 6 8 lcdsca φS=opprF
11 10 fveq2d φ1S=1opprF
12 9 4 oppr1 1˙=1opprF
13 11 7 12 3eqtr4g φI=1˙