Description: The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcd1.h | |- H = ( LHyp ` K ) | |
| lcd1.u | |- U = ( ( DVecH ` K ) ` W ) | ||
| lcd1.f | |- F = ( Scalar ` U ) | ||
| lcd1.j | |- .1. = ( 1r ` F ) | ||
| lcd1.c | |- C = ( ( LCDual ` K ) ` W ) | ||
| lcd1.s | |- S = ( Scalar ` C ) | ||
| lcd1.i | |- I = ( 1r ` S ) | ||
| lcd1.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | ||
| Assertion | lcd1 | |- ( ph -> I = .1. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lcd1.h | |- H = ( LHyp ` K ) | |
| 2 | lcd1.u | |- U = ( ( DVecH ` K ) ` W ) | |
| 3 | lcd1.f | |- F = ( Scalar ` U ) | |
| 4 | lcd1.j | |- .1. = ( 1r ` F ) | |
| 5 | lcd1.c | |- C = ( ( LCDual ` K ) ` W ) | |
| 6 | lcd1.s | |- S = ( Scalar ` C ) | |
| 7 | lcd1.i | |- I = ( 1r ` S ) | |
| 8 | lcd1.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | |
| 9 | eqid | |- ( oppR ` F ) = ( oppR ` F ) | |
| 10 | 1 2 3 9 5 6 8 | lcdsca | |- ( ph -> S = ( oppR ` F ) ) | 
| 11 | 10 | fveq2d | |- ( ph -> ( 1r ` S ) = ( 1r ` ( oppR ` F ) ) ) | 
| 12 | 9 4 | oppr1 | |- .1. = ( 1r ` ( oppR ` F ) ) | 
| 13 | 11 7 12 | 3eqtr4g | |- ( ph -> I = .1. ) |