Metamath Proof Explorer


Theorem lcdneg

Description: The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses lcdneg.h
|- H = ( LHyp ` K )
lcdneg.u
|- U = ( ( DVecH ` K ) ` W )
lcdneg.r
|- R = ( Scalar ` U )
lcdneg.m
|- M = ( invg ` R )
lcdneg.c
|- C = ( ( LCDual ` K ) ` W )
lcdneg.s
|- S = ( Scalar ` C )
lcdneg.n
|- N = ( invg ` S )
lcdneg.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lcdneg
|- ( ph -> N = M )

Proof

Step Hyp Ref Expression
1 lcdneg.h
 |-  H = ( LHyp ` K )
2 lcdneg.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdneg.r
 |-  R = ( Scalar ` U )
4 lcdneg.m
 |-  M = ( invg ` R )
5 lcdneg.c
 |-  C = ( ( LCDual ` K ) ` W )
6 lcdneg.s
 |-  S = ( Scalar ` C )
7 lcdneg.n
 |-  N = ( invg ` S )
8 lcdneg.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 eqid
 |-  ( oppR ` R ) = ( oppR ` R )
10 1 2 3 9 5 6 8 lcdsca
 |-  ( ph -> S = ( oppR ` R ) )
11 10 fveq2d
 |-  ( ph -> ( invg ` S ) = ( invg ` ( oppR ` R ) ) )
12 9 4 opprneg
 |-  M = ( invg ` ( oppR ` R ) )
13 11 7 12 3eqtr4g
 |-  ( ph -> N = M )