| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdneg.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lcdneg.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lcdneg.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | lcdneg.m | ⊢ 𝑀  =  ( invg ‘ 𝑅 ) | 
						
							| 5 |  | lcdneg.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | lcdneg.s | ⊢ 𝑆  =  ( Scalar ‘ 𝐶 ) | 
						
							| 7 |  | lcdneg.n | ⊢ 𝑁  =  ( invg ‘ 𝑆 ) | 
						
							| 8 |  | lcdneg.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | eqid | ⊢ ( oppr ‘ 𝑅 )  =  ( oppr ‘ 𝑅 ) | 
						
							| 10 | 1 2 3 9 5 6 8 | lcdsca | ⊢ ( 𝜑  →  𝑆  =  ( oppr ‘ 𝑅 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝜑  →  ( invg ‘ 𝑆 )  =  ( invg ‘ ( oppr ‘ 𝑅 ) ) ) | 
						
							| 12 | 9 4 | opprneg | ⊢ 𝑀  =  ( invg ‘ ( oppr ‘ 𝑅 ) ) | 
						
							| 13 | 11 7 12 | 3eqtr4g | ⊢ ( 𝜑  →  𝑁  =  𝑀 ) |