| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdneg.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcdneg.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcdneg.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
lcdneg.m |
⊢ 𝑀 = ( invg ‘ 𝑅 ) |
| 5 |
|
lcdneg.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
lcdneg.s |
⊢ 𝑆 = ( Scalar ‘ 𝐶 ) |
| 7 |
|
lcdneg.n |
⊢ 𝑁 = ( invg ‘ 𝑆 ) |
| 8 |
|
lcdneg.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 10 |
1 2 3 9 5 6 8
|
lcdsca |
⊢ ( 𝜑 → 𝑆 = ( oppr ‘ 𝑅 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( invg ‘ 𝑆 ) = ( invg ‘ ( oppr ‘ 𝑅 ) ) ) |
| 12 |
9 4
|
opprneg |
⊢ 𝑀 = ( invg ‘ ( oppr ‘ 𝑅 ) ) |
| 13 |
11 7 12
|
3eqtr4g |
⊢ ( 𝜑 → 𝑁 = 𝑀 ) |