Metamath Proof Explorer


Theorem lcdneg

Description: The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses lcdneg.h H=LHypK
lcdneg.u U=DVecHKW
lcdneg.r R=ScalarU
lcdneg.m M=invgR
lcdneg.c C=LCDualKW
lcdneg.s S=ScalarC
lcdneg.n N=invgS
lcdneg.k φKHLWH
Assertion lcdneg φN=M

Proof

Step Hyp Ref Expression
1 lcdneg.h H=LHypK
2 lcdneg.u U=DVecHKW
3 lcdneg.r R=ScalarU
4 lcdneg.m M=invgR
5 lcdneg.c C=LCDualKW
6 lcdneg.s S=ScalarC
7 lcdneg.n N=invgS
8 lcdneg.k φKHLWH
9 eqid opprR=opprR
10 1 2 3 9 5 6 8 lcdsca φS=opprR
11 10 fveq2d φinvgS=invgopprR
12 9 4 opprneg M=invgopprR
13 11 7 12 3eqtr4g φN=M