Step |
Hyp |
Ref |
Expression |
1 |
|
lcd0v.h |
|- H = ( LHyp ` K ) |
2 |
|
lcd0v.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
lcd0v.v |
|- V = ( Base ` U ) |
4 |
|
lcd0v.r |
|- R = ( Scalar ` U ) |
5 |
|
lcd0v.z |
|- .0. = ( 0g ` R ) |
6 |
|
lcd0v.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
lcd0v.o |
|- O = ( 0g ` C ) |
8 |
|
lcd0v.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
10 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
11 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
12 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
13 |
1 9 6 2 10 11 12 8
|
lcdval |
|- ( ph -> C = ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) |
14 |
13
|
fveq2d |
|- ( ph -> ( 0g ` C ) = ( 0g ` ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) ) |
15 |
7 14
|
syl5eq |
|- ( ph -> O = ( 0g ` ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) ) |
16 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
17 |
12 16
|
lduallmod |
|- ( ph -> ( LDual ` U ) e. LMod ) |
18 |
|
eqid |
|- ( LSubSp ` ( LDual ` U ) ) = ( LSubSp ` ( LDual ` U ) ) |
19 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } |
20 |
1 2 9 10 11 12 18 19 8
|
lclkr |
|- ( ph -> { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } e. ( LSubSp ` ( LDual ` U ) ) ) |
21 |
|
eqid |
|- ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) = ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) |
22 |
|
eqid |
|- ( 0g ` ( LDual ` U ) ) = ( 0g ` ( LDual ` U ) ) |
23 |
|
eqid |
|- ( 0g ` ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) = ( 0g ` ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) |
24 |
21 22 23 18
|
lss0v |
|- ( ( ( LDual ` U ) e. LMod /\ { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } e. ( LSubSp ` ( LDual ` U ) ) ) -> ( 0g ` ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) = ( 0g ` ( LDual ` U ) ) ) |
25 |
17 20 24
|
syl2anc |
|- ( ph -> ( 0g ` ( ( LDual ` U ) |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) = ( 0g ` ( LDual ` U ) ) ) |
26 |
3 4 5 12 22 16
|
ldual0v |
|- ( ph -> ( 0g ` ( LDual ` U ) ) = ( V X. { .0. } ) ) |
27 |
15 25 26
|
3eqtrd |
|- ( ph -> O = ( V X. { .0. } ) ) |