Step |
Hyp |
Ref |
Expression |
1 |
|
lcd0v2.h |
|- H = ( LHyp ` K ) |
2 |
|
lcd0v2.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
lcd0v2.d |
|- D = ( LDual ` U ) |
4 |
|
lcd0v2.z |
|- .0. = ( 0g ` D ) |
5 |
|
lcd0v2.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
lcd0v2.o |
|- O = ( 0g ` C ) |
7 |
|
lcd0v2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
9 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
10 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
11 |
1 2 8 9 10 5 6 7
|
lcd0v |
|- ( ph -> O = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) |
12 |
1 2 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
13 |
8 9 10 3 4 12
|
ldual0v |
|- ( ph -> .0. = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) |
14 |
11 13
|
eqtr4d |
|- ( ph -> O = .0. ) |