| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcd0v2.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcd0v2.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
lcd0v2.d |
|- D = ( LDual ` U ) |
| 4 |
|
lcd0v2.z |
|- .0. = ( 0g ` D ) |
| 5 |
|
lcd0v2.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 6 |
|
lcd0v2.o |
|- O = ( 0g ` C ) |
| 7 |
|
lcd0v2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 9 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
| 10 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
| 11 |
1 2 8 9 10 5 6 7
|
lcd0v |
|- ( ph -> O = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) |
| 12 |
1 2 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 13 |
8 9 10 3 4 12
|
ldual0v |
|- ( ph -> .0. = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) |
| 14 |
11 13
|
eqtr4d |
|- ( ph -> O = .0. ) |