Metamath Proof Explorer


Theorem lcd0v2

Description: The zero functional in the set of functionals with closed kernels. (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses lcd0v2.h H=LHypK
lcd0v2.u U=DVecHKW
lcd0v2.d D=LDualU
lcd0v2.z 0˙=0D
lcd0v2.c C=LCDualKW
lcd0v2.o O=0C
lcd0v2.k φKHLWH
Assertion lcd0v2 φO=0˙

Proof

Step Hyp Ref Expression
1 lcd0v2.h H=LHypK
2 lcd0v2.u U=DVecHKW
3 lcd0v2.d D=LDualU
4 lcd0v2.z 0˙=0D
5 lcd0v2.c C=LCDualKW
6 lcd0v2.o O=0C
7 lcd0v2.k φKHLWH
8 eqid BaseU=BaseU
9 eqid ScalarU=ScalarU
10 eqid 0ScalarU=0ScalarU
11 1 2 8 9 10 5 6 7 lcd0v φO=BaseU×0ScalarU
12 1 2 7 dvhlmod φULMod
13 8 9 10 3 4 12 ldual0v φ0˙=BaseU×0ScalarU
14 11 13 eqtr4d φO=0˙