Metamath Proof Explorer


Theorem lcd0v2

Description: The zero functional in the set of functionals with closed kernels. (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses lcd0v2.h H = LHyp K
lcd0v2.u U = DVecH K W
lcd0v2.d D = LDual U
lcd0v2.z 0 ˙ = 0 D
lcd0v2.c C = LCDual K W
lcd0v2.o O = 0 C
lcd0v2.k φ K HL W H
Assertion lcd0v2 φ O = 0 ˙

Proof

Step Hyp Ref Expression
1 lcd0v2.h H = LHyp K
2 lcd0v2.u U = DVecH K W
3 lcd0v2.d D = LDual U
4 lcd0v2.z 0 ˙ = 0 D
5 lcd0v2.c C = LCDual K W
6 lcd0v2.o O = 0 C
7 lcd0v2.k φ K HL W H
8 eqid Base U = Base U
9 eqid Scalar U = Scalar U
10 eqid 0 Scalar U = 0 Scalar U
11 1 2 8 9 10 5 6 7 lcd0v φ O = Base U × 0 Scalar U
12 1 2 7 dvhlmod φ U LMod
13 8 9 10 3 4 12 ldual0v φ 0 ˙ = Base U × 0 Scalar U
14 11 13 eqtr4d φ O = 0 ˙