Metamath Proof Explorer


Theorem lcd0vvalN

Description: Value of the zero functional at any vector. (Contributed by NM, 28-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcd0vval.h H = LHyp K
lcd0vval.u U = DVecH K W
lcd0vval.v V = Base U
lcd0vval.s S = Scalar U
lcd0vval.z 0 ˙ = 0 S
lcd0vval.c C = LCDual K W
lcd0vval.o O = 0 C
lcd0vval.k φ K HL W H
lcd0vval.x φ X V
Assertion lcd0vvalN φ O X = 0 ˙

Proof

Step Hyp Ref Expression
1 lcd0vval.h H = LHyp K
2 lcd0vval.u U = DVecH K W
3 lcd0vval.v V = Base U
4 lcd0vval.s S = Scalar U
5 lcd0vval.z 0 ˙ = 0 S
6 lcd0vval.c C = LCDual K W
7 lcd0vval.o O = 0 C
8 lcd0vval.k φ K HL W H
9 lcd0vval.x φ X V
10 1 2 3 4 5 6 7 8 lcd0v φ O = V × 0 ˙
11 10 fveq1d φ O X = V × 0 ˙ X
12 5 fvexi 0 ˙ V
13 12 fvconst2 X V V × 0 ˙ X = 0 ˙
14 9 13 syl φ V × 0 ˙ X = 0 ˙
15 11 14 eqtrd φ O X = 0 ˙