Description: Value of the zero functional at any vector. (Contributed by NM, 28-Mar-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcd0vval.h | |- H = ( LHyp ` K ) |
|
| lcd0vval.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| lcd0vval.v | |- V = ( Base ` U ) |
||
| lcd0vval.s | |- S = ( Scalar ` U ) |
||
| lcd0vval.z | |- .0. = ( 0g ` S ) |
||
| lcd0vval.c | |- C = ( ( LCDual ` K ) ` W ) |
||
| lcd0vval.o | |- O = ( 0g ` C ) |
||
| lcd0vval.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| lcd0vval.x | |- ( ph -> X e. V ) |
||
| Assertion | lcd0vvalN | |- ( ph -> ( O ` X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcd0vval.h | |- H = ( LHyp ` K ) |
|
| 2 | lcd0vval.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 3 | lcd0vval.v | |- V = ( Base ` U ) |
|
| 4 | lcd0vval.s | |- S = ( Scalar ` U ) |
|
| 5 | lcd0vval.z | |- .0. = ( 0g ` S ) |
|
| 6 | lcd0vval.c | |- C = ( ( LCDual ` K ) ` W ) |
|
| 7 | lcd0vval.o | |- O = ( 0g ` C ) |
|
| 8 | lcd0vval.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 9 | lcd0vval.x | |- ( ph -> X e. V ) |
|
| 10 | 1 2 3 4 5 6 7 8 | lcd0v | |- ( ph -> O = ( V X. { .0. } ) ) |
| 11 | 10 | fveq1d | |- ( ph -> ( O ` X ) = ( ( V X. { .0. } ) ` X ) ) |
| 12 | 5 | fvexi | |- .0. e. _V |
| 13 | 12 | fvconst2 | |- ( X e. V -> ( ( V X. { .0. } ) ` X ) = .0. ) |
| 14 | 9 13 | syl | |- ( ph -> ( ( V X. { .0. } ) ` X ) = .0. ) |
| 15 | 11 14 | eqtrd | |- ( ph -> ( O ` X ) = .0. ) |