Metamath Proof Explorer


Theorem lcd0vvalN

Description: Value of the zero functional at any vector. (Contributed by NM, 28-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcd0vval.h 𝐻 = ( LHyp ‘ 𝐾 )
lcd0vval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcd0vval.v 𝑉 = ( Base ‘ 𝑈 )
lcd0vval.s 𝑆 = ( Scalar ‘ 𝑈 )
lcd0vval.z 0 = ( 0g𝑆 )
lcd0vval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcd0vval.o 𝑂 = ( 0g𝐶 )
lcd0vval.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcd0vval.x ( 𝜑𝑋𝑉 )
Assertion lcd0vvalN ( 𝜑 → ( 𝑂𝑋 ) = 0 )

Proof

Step Hyp Ref Expression
1 lcd0vval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcd0vval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcd0vval.v 𝑉 = ( Base ‘ 𝑈 )
4 lcd0vval.s 𝑆 = ( Scalar ‘ 𝑈 )
5 lcd0vval.z 0 = ( 0g𝑆 )
6 lcd0vval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 lcd0vval.o 𝑂 = ( 0g𝐶 )
8 lcd0vval.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 lcd0vval.x ( 𝜑𝑋𝑉 )
10 1 2 3 4 5 6 7 8 lcd0v ( 𝜑𝑂 = ( 𝑉 × { 0 } ) )
11 10 fveq1d ( 𝜑 → ( 𝑂𝑋 ) = ( ( 𝑉 × { 0 } ) ‘ 𝑋 ) )
12 5 fvexi 0 ∈ V
13 12 fvconst2 ( 𝑋𝑉 → ( ( 𝑉 × { 0 } ) ‘ 𝑋 ) = 0 )
14 9 13 syl ( 𝜑 → ( ( 𝑉 × { 0 } ) ‘ 𝑋 ) = 0 )
15 11 14 eqtrd ( 𝜑 → ( 𝑂𝑋 ) = 0 )