| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcd0vval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcd0vval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcd0vval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
lcd0vval.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
| 5 |
|
lcd0vval.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 6 |
|
lcd0vval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
lcd0vval.o |
⊢ 𝑂 = ( 0g ‘ 𝐶 ) |
| 8 |
|
lcd0vval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
lcd0vval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
1 2 3 4 5 6 7 8
|
lcd0v |
⊢ ( 𝜑 → 𝑂 = ( 𝑉 × { 0 } ) ) |
| 11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = ( ( 𝑉 × { 0 } ) ‘ 𝑋 ) ) |
| 12 |
5
|
fvexi |
⊢ 0 ∈ V |
| 13 |
12
|
fvconst2 |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑉 × { 0 } ) ‘ 𝑋 ) = 0 ) |
| 14 |
9 13
|
syl |
⊢ ( 𝜑 → ( ( 𝑉 × { 0 } ) ‘ 𝑋 ) = 0 ) |
| 15 |
11 14
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = 0 ) |