Step |
Hyp |
Ref |
Expression |
1 |
|
lcd0vval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcd0vval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcd0vval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
lcd0vval.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
5 |
|
lcd0vval.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
6 |
|
lcd0vval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
lcd0vval.o |
⊢ 𝑂 = ( 0g ‘ 𝐶 ) |
8 |
|
lcd0vval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
lcd0vval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
1 2 3 4 5 6 7 8
|
lcd0v |
⊢ ( 𝜑 → 𝑂 = ( 𝑉 × { 0 } ) ) |
11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = ( ( 𝑉 × { 0 } ) ‘ 𝑋 ) ) |
12 |
5
|
fvexi |
⊢ 0 ∈ V |
13 |
12
|
fvconst2 |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑉 × { 0 } ) ‘ 𝑋 ) = 0 ) |
14 |
9 13
|
syl |
⊢ ( 𝜑 → ( ( 𝑉 × { 0 } ) ‘ 𝑋 ) = 0 ) |
15 |
11 14
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = 0 ) |