Metamath Proof Explorer


Theorem lcd0vcl

Description: Closure of the zero functional in the set of functionals with closed kernels. (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses lcdv0cl.h
|- H = ( LHyp ` K )
lcdv0cl.c
|- C = ( ( LCDual ` K ) ` W )
lcdv0cl.v
|- V = ( Base ` C )
lcdv0cl.o
|- O = ( 0g ` C )
lcdv0cl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lcd0vcl
|- ( ph -> O e. V )

Proof

Step Hyp Ref Expression
1 lcdv0cl.h
 |-  H = ( LHyp ` K )
2 lcdv0cl.c
 |-  C = ( ( LCDual ` K ) ` W )
3 lcdv0cl.v
 |-  V = ( Base ` C )
4 lcdv0cl.o
 |-  O = ( 0g ` C )
5 lcdv0cl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 1 2 5 lcdlmod
 |-  ( ph -> C e. LMod )
7 3 4 lmod0vcl
 |-  ( C e. LMod -> O e. V )
8 6 7 syl
 |-  ( ph -> O e. V )