Description: Closure of the zero functional in the set of functionals with closed kernels. (Contributed by NM, 15-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcdv0cl.h | |- H = ( LHyp ` K ) |
|
lcdv0cl.c | |- C = ( ( LCDual ` K ) ` W ) |
||
lcdv0cl.v | |- V = ( Base ` C ) |
||
lcdv0cl.o | |- O = ( 0g ` C ) |
||
lcdv0cl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
Assertion | lcd0vcl | |- ( ph -> O e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdv0cl.h | |- H = ( LHyp ` K ) |
|
2 | lcdv0cl.c | |- C = ( ( LCDual ` K ) ` W ) |
|
3 | lcdv0cl.v | |- V = ( Base ` C ) |
|
4 | lcdv0cl.o | |- O = ( 0g ` C ) |
|
5 | lcdv0cl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
6 | 1 2 5 | lcdlmod | |- ( ph -> C e. LMod ) |
7 | 3 4 | lmod0vcl | |- ( C e. LMod -> O e. V ) |
8 | 6 7 | syl | |- ( ph -> O e. V ) |