| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcd0v2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcd0v2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcd0v2.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 4 |
|
lcd0v2.z |
⊢ 0 = ( 0g ‘ 𝐷 ) |
| 5 |
|
lcd0v2.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
lcd0v2.o |
⊢ 𝑂 = ( 0g ‘ 𝐶 ) |
| 7 |
|
lcd0v2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) |
| 11 |
1 2 8 9 10 5 6 7
|
lcd0v |
⊢ ( 𝜑 → 𝑂 = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) |
| 12 |
1 2 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 13 |
8 9 10 3 4 12
|
ldual0v |
⊢ ( 𝜑 → 0 = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) |
| 14 |
11 13
|
eqtr4d |
⊢ ( 𝜑 → 𝑂 = 0 ) |