Metamath Proof Explorer


Theorem lcd0v2

Description: The zero functional in the set of functionals with closed kernels. (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses lcd0v2.h 𝐻 = ( LHyp ‘ 𝐾 )
lcd0v2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcd0v2.d 𝐷 = ( LDual ‘ 𝑈 )
lcd0v2.z 0 = ( 0g𝐷 )
lcd0v2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcd0v2.o 𝑂 = ( 0g𝐶 )
lcd0v2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lcd0v2 ( 𝜑𝑂 = 0 )

Proof

Step Hyp Ref Expression
1 lcd0v2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcd0v2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcd0v2.d 𝐷 = ( LDual ‘ 𝑈 )
4 lcd0v2.z 0 = ( 0g𝐷 )
5 lcd0v2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 lcd0v2.o 𝑂 = ( 0g𝐶 )
7 lcd0v2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
9 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
10 eqid ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) )
11 1 2 8 9 10 5 6 7 lcd0v ( 𝜑𝑂 = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )
12 1 2 7 dvhlmod ( 𝜑𝑈 ∈ LMod )
13 8 9 10 3 4 12 ldual0v ( 𝜑0 = ( ( Base ‘ 𝑈 ) × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )
14 11 13 eqtr4d ( 𝜑𝑂 = 0 )