Description: A vector in the base set of the closed kernel dual space is a functional. (Contributed by NM, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcdvbasess.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| lcdvbasess.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | ||
| lcdvbasess.v | ⊢ 𝑉 = ( Base ‘ 𝐶 ) | ||
| lcdvbasess.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
| lcdvbasess.f | ⊢ 𝐹 = ( LFnl ‘ 𝑈 ) | ||
| lcdvbasess.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
| lcdvbaselfl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | lcdvbaselfl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcdvbasess.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 2 | lcdvbasess.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | |
| 3 | lcdvbasess.v | ⊢ 𝑉 = ( Base ‘ 𝐶 ) | |
| 4 | lcdvbasess.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
| 5 | lcdvbasess.f | ⊢ 𝐹 = ( LFnl ‘ 𝑈 ) | |
| 6 | lcdvbasess.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
| 7 | lcdvbaselfl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 8 | 1 2 3 4 5 6 | lcdvbasess | ⊢ ( 𝜑 → 𝑉 ⊆ 𝐹 ) |
| 9 | 8 7 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ 𝐹 ) |