Metamath Proof Explorer


Theorem lcdvbaselfl

Description: A vector in the base set of the closed kernel dual space is a functional. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses lcdvbasess.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdvbasess.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdvbasess.v 𝑉 = ( Base ‘ 𝐶 )
lcdvbasess.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdvbasess.f 𝐹 = ( LFnl ‘ 𝑈 )
lcdvbasess.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcdvbaselfl.x ( 𝜑𝑋𝑉 )
Assertion lcdvbaselfl ( 𝜑𝑋𝐹 )

Proof

Step Hyp Ref Expression
1 lcdvbasess.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdvbasess.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
3 lcdvbasess.v 𝑉 = ( Base ‘ 𝐶 )
4 lcdvbasess.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 lcdvbasess.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcdvbasess.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 lcdvbaselfl.x ( 𝜑𝑋𝑉 )
8 1 2 3 4 5 6 lcdvbasess ( 𝜑𝑉𝐹 )
9 8 7 sseldd ( 𝜑𝑋𝐹 )