Description: A vector in the base set of the closed kernel dual space is a functional. (Contributed by NM, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcdvbasess.h | |- H = ( LHyp ` K ) |
|
| lcdvbasess.c | |- C = ( ( LCDual ` K ) ` W ) |
||
| lcdvbasess.v | |- V = ( Base ` C ) |
||
| lcdvbasess.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| lcdvbasess.f | |- F = ( LFnl ` U ) |
||
| lcdvbasess.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| lcdvbaselfl.x | |- ( ph -> X e. V ) |
||
| Assertion | lcdvbaselfl | |- ( ph -> X e. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcdvbasess.h | |- H = ( LHyp ` K ) |
|
| 2 | lcdvbasess.c | |- C = ( ( LCDual ` K ) ` W ) |
|
| 3 | lcdvbasess.v | |- V = ( Base ` C ) |
|
| 4 | lcdvbasess.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 5 | lcdvbasess.f | |- F = ( LFnl ` U ) |
|
| 6 | lcdvbasess.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 7 | lcdvbaselfl.x | |- ( ph -> X e. V ) |
|
| 8 | 1 2 3 4 5 6 | lcdvbasess | |- ( ph -> V C_ F ) |
| 9 | 8 7 | sseldd | |- ( ph -> X e. F ) |