Metamath Proof Explorer


Theorem lcdvbaselfl

Description: A vector in the base set of the closed kernel dual space is a functional. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses lcdvbasess.h
|- H = ( LHyp ` K )
lcdvbasess.c
|- C = ( ( LCDual ` K ) ` W )
lcdvbasess.v
|- V = ( Base ` C )
lcdvbasess.u
|- U = ( ( DVecH ` K ) ` W )
lcdvbasess.f
|- F = ( LFnl ` U )
lcdvbasess.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcdvbaselfl.x
|- ( ph -> X e. V )
Assertion lcdvbaselfl
|- ( ph -> X e. F )

Proof

Step Hyp Ref Expression
1 lcdvbasess.h
 |-  H = ( LHyp ` K )
2 lcdvbasess.c
 |-  C = ( ( LCDual ` K ) ` W )
3 lcdvbasess.v
 |-  V = ( Base ` C )
4 lcdvbasess.u
 |-  U = ( ( DVecH ` K ) ` W )
5 lcdvbasess.f
 |-  F = ( LFnl ` U )
6 lcdvbasess.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
7 lcdvbaselfl.x
 |-  ( ph -> X e. V )
8 1 2 3 4 5 6 lcdvbasess
 |-  ( ph -> V C_ F )
9 8 7 sseldd
 |-  ( ph -> X e. F )