Metamath Proof Explorer


Theorem lcdvbasecl

Description: Closure of the value of a vector (functional) in the closed kernel dual space. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses lcdvbasecl.h
|- H = ( LHyp ` K )
lcdvbasecl.u
|- U = ( ( DVecH ` K ) ` W )
lcdvbasecl.v
|- V = ( Base ` U )
lcdvbasecl.s
|- S = ( Scalar ` U )
lcdvbasecl.r
|- R = ( Base ` S )
lcdvbasecl.c
|- C = ( ( LCDual ` K ) ` W )
lcdvbasecl.e
|- E = ( Base ` C )
lcdvbasecl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcdvbasecl.f
|- ( ph -> F e. E )
lcdvbasecl.x
|- ( ph -> X e. V )
Assertion lcdvbasecl
|- ( ph -> ( F ` X ) e. R )

Proof

Step Hyp Ref Expression
1 lcdvbasecl.h
 |-  H = ( LHyp ` K )
2 lcdvbasecl.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdvbasecl.v
 |-  V = ( Base ` U )
4 lcdvbasecl.s
 |-  S = ( Scalar ` U )
5 lcdvbasecl.r
 |-  R = ( Base ` S )
6 lcdvbasecl.c
 |-  C = ( ( LCDual ` K ) ` W )
7 lcdvbasecl.e
 |-  E = ( Base ` C )
8 lcdvbasecl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 lcdvbasecl.f
 |-  ( ph -> F e. E )
10 lcdvbasecl.x
 |-  ( ph -> X e. V )
11 1 2 8 dvhlmod
 |-  ( ph -> U e. LMod )
12 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
13 1 6 7 2 12 8 9 lcdvbaselfl
 |-  ( ph -> F e. ( LFnl ` U ) )
14 4 5 3 12 lflcl
 |-  ( ( U e. LMod /\ F e. ( LFnl ` U ) /\ X e. V ) -> ( F ` X ) e. R )
15 11 13 10 14 syl3anc
 |-  ( ph -> ( F ` X ) e. R )