Description: Closure of the value of a vector (functional) in the closed kernel dual space. (Contributed by NM, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcdvbasecl.h | |- H = ( LHyp ` K ) |
|
lcdvbasecl.u | |- U = ( ( DVecH ` K ) ` W ) |
||
lcdvbasecl.v | |- V = ( Base ` U ) |
||
lcdvbasecl.s | |- S = ( Scalar ` U ) |
||
lcdvbasecl.r | |- R = ( Base ` S ) |
||
lcdvbasecl.c | |- C = ( ( LCDual ` K ) ` W ) |
||
lcdvbasecl.e | |- E = ( Base ` C ) |
||
lcdvbasecl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
lcdvbasecl.f | |- ( ph -> F e. E ) |
||
lcdvbasecl.x | |- ( ph -> X e. V ) |
||
Assertion | lcdvbasecl | |- ( ph -> ( F ` X ) e. R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdvbasecl.h | |- H = ( LHyp ` K ) |
|
2 | lcdvbasecl.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | lcdvbasecl.v | |- V = ( Base ` U ) |
|
4 | lcdvbasecl.s | |- S = ( Scalar ` U ) |
|
5 | lcdvbasecl.r | |- R = ( Base ` S ) |
|
6 | lcdvbasecl.c | |- C = ( ( LCDual ` K ) ` W ) |
|
7 | lcdvbasecl.e | |- E = ( Base ` C ) |
|
8 | lcdvbasecl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
9 | lcdvbasecl.f | |- ( ph -> F e. E ) |
|
10 | lcdvbasecl.x | |- ( ph -> X e. V ) |
|
11 | 1 2 8 | dvhlmod | |- ( ph -> U e. LMod ) |
12 | eqid | |- ( LFnl ` U ) = ( LFnl ` U ) |
|
13 | 1 6 7 2 12 8 9 | lcdvbaselfl | |- ( ph -> F e. ( LFnl ` U ) ) |
14 | 4 5 3 12 | lflcl | |- ( ( U e. LMod /\ F e. ( LFnl ` U ) /\ X e. V ) -> ( F ` X ) e. R ) |
15 | 11 13 10 14 | syl3anc | |- ( ph -> ( F ` X ) e. R ) |