Metamath Proof Explorer


Theorem lcdvbasecl

Description: Closure of the value of a vector (functional) in the closed kernel dual space. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses lcdvbasecl.h H=LHypK
lcdvbasecl.u U=DVecHKW
lcdvbasecl.v V=BaseU
lcdvbasecl.s S=ScalarU
lcdvbasecl.r R=BaseS
lcdvbasecl.c C=LCDualKW
lcdvbasecl.e E=BaseC
lcdvbasecl.k φKHLWH
lcdvbasecl.f φFE
lcdvbasecl.x φXV
Assertion lcdvbasecl φFXR

Proof

Step Hyp Ref Expression
1 lcdvbasecl.h H=LHypK
2 lcdvbasecl.u U=DVecHKW
3 lcdvbasecl.v V=BaseU
4 lcdvbasecl.s S=ScalarU
5 lcdvbasecl.r R=BaseS
6 lcdvbasecl.c C=LCDualKW
7 lcdvbasecl.e E=BaseC
8 lcdvbasecl.k φKHLWH
9 lcdvbasecl.f φFE
10 lcdvbasecl.x φXV
11 1 2 8 dvhlmod φULMod
12 eqid LFnlU=LFnlU
13 1 6 7 2 12 8 9 lcdvbaselfl φFLFnlU
14 4 5 3 12 lflcl ULModFLFnlUXVFXR
15 11 13 10 14 syl3anc φFXR