Metamath Proof Explorer


Theorem lcdvadd

Description: Vector addition for the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015)

Ref Expression
Hypotheses lcdvadd.h
|- H = ( LHyp ` K )
lcdvadd.u
|- U = ( ( DVecH ` K ) ` W )
lcdvadd.d
|- D = ( LDual ` U )
lcdvadd.a
|- .+ = ( +g ` D )
lcdvadd.c
|- C = ( ( LCDual ` K ) ` W )
lcdvadd.p
|- .+b = ( +g ` C )
lcdvadd.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lcdvadd
|- ( ph -> .+b = .+ )

Proof

Step Hyp Ref Expression
1 lcdvadd.h
 |-  H = ( LHyp ` K )
2 lcdvadd.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdvadd.d
 |-  D = ( LDual ` U )
4 lcdvadd.a
 |-  .+ = ( +g ` D )
5 lcdvadd.c
 |-  C = ( ( LCDual ` K ) ` W )
6 lcdvadd.p
 |-  .+b = ( +g ` C )
7 lcdvadd.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
9 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
10 eqid
 |-  ( LKer ` U ) = ( LKer ` U )
11 1 8 5 2 9 10 3 7 lcdval
 |-  ( ph -> C = ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) )
12 11 fveq2d
 |-  ( ph -> ( +g ` C ) = ( +g ` ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) )
13 fvex
 |-  ( LFnl ` U ) e. _V
14 13 rabex
 |-  { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } e. _V
15 eqid
 |-  ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) = ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } )
16 15 4 ressplusg
 |-  ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } e. _V -> .+ = ( +g ` ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) )
17 14 16 ax-mp
 |-  .+ = ( +g ` ( D |`s { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) )
18 12 6 17 3eqtr4g
 |-  ( ph -> .+b = .+ )