| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdvaddval.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lcdvaddval.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | lcdvaddval.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | lcdvaddval.r |  |-  R = ( Scalar ` U ) | 
						
							| 5 |  | lcdvaddval.a |  |-  .+ = ( +g ` R ) | 
						
							| 6 |  | lcdvaddval.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 7 |  | lcdvaddval.d |  |-  D = ( Base ` C ) | 
						
							| 8 |  | lcdvaddval.p |  |-  .+b = ( +g ` C ) | 
						
							| 9 |  | lcdvaddval.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | lcdvaddval.f |  |-  ( ph -> F e. D ) | 
						
							| 11 |  | lcdvaddval.g |  |-  ( ph -> G e. D ) | 
						
							| 12 |  | lcdvaddval.x |  |-  ( ph -> X e. V ) | 
						
							| 13 |  | eqid |  |-  ( LDual ` U ) = ( LDual ` U ) | 
						
							| 14 |  | eqid |  |-  ( +g ` ( LDual ` U ) ) = ( +g ` ( LDual ` U ) ) | 
						
							| 15 | 1 2 13 14 6 8 9 | lcdvadd |  |-  ( ph -> .+b = ( +g ` ( LDual ` U ) ) ) | 
						
							| 16 | 15 | oveqd |  |-  ( ph -> ( F .+b G ) = ( F ( +g ` ( LDual ` U ) ) G ) ) | 
						
							| 17 | 16 | fveq1d |  |-  ( ph -> ( ( F .+b G ) ` X ) = ( ( F ( +g ` ( LDual ` U ) ) G ) ` X ) ) | 
						
							| 18 |  | eqid |  |-  ( LFnl ` U ) = ( LFnl ` U ) | 
						
							| 19 | 1 2 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 20 | 1 6 7 2 18 9 10 | lcdvbaselfl |  |-  ( ph -> F e. ( LFnl ` U ) ) | 
						
							| 21 | 1 6 7 2 18 9 11 | lcdvbaselfl |  |-  ( ph -> G e. ( LFnl ` U ) ) | 
						
							| 22 | 3 4 5 18 13 14 19 20 21 12 | ldualvaddval |  |-  ( ph -> ( ( F ( +g ` ( LDual ` U ) ) G ) ` X ) = ( ( F ` X ) .+ ( G ` X ) ) ) | 
						
							| 23 | 17 22 | eqtrd |  |-  ( ph -> ( ( F .+b G ) ` X ) = ( ( F ` X ) .+ ( G ` X ) ) ) |