Metamath Proof Explorer


Theorem lcdvaddval

Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015)

Ref Expression
Hypotheses lcdvaddval.h
|- H = ( LHyp ` K )
lcdvaddval.u
|- U = ( ( DVecH ` K ) ` W )
lcdvaddval.v
|- V = ( Base ` U )
lcdvaddval.r
|- R = ( Scalar ` U )
lcdvaddval.a
|- .+ = ( +g ` R )
lcdvaddval.c
|- C = ( ( LCDual ` K ) ` W )
lcdvaddval.d
|- D = ( Base ` C )
lcdvaddval.p
|- .+b = ( +g ` C )
lcdvaddval.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcdvaddval.f
|- ( ph -> F e. D )
lcdvaddval.g
|- ( ph -> G e. D )
lcdvaddval.x
|- ( ph -> X e. V )
Assertion lcdvaddval
|- ( ph -> ( ( F .+b G ) ` X ) = ( ( F ` X ) .+ ( G ` X ) ) )

Proof

Step Hyp Ref Expression
1 lcdvaddval.h
 |-  H = ( LHyp ` K )
2 lcdvaddval.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdvaddval.v
 |-  V = ( Base ` U )
4 lcdvaddval.r
 |-  R = ( Scalar ` U )
5 lcdvaddval.a
 |-  .+ = ( +g ` R )
6 lcdvaddval.c
 |-  C = ( ( LCDual ` K ) ` W )
7 lcdvaddval.d
 |-  D = ( Base ` C )
8 lcdvaddval.p
 |-  .+b = ( +g ` C )
9 lcdvaddval.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcdvaddval.f
 |-  ( ph -> F e. D )
11 lcdvaddval.g
 |-  ( ph -> G e. D )
12 lcdvaddval.x
 |-  ( ph -> X e. V )
13 eqid
 |-  ( LDual ` U ) = ( LDual ` U )
14 eqid
 |-  ( +g ` ( LDual ` U ) ) = ( +g ` ( LDual ` U ) )
15 1 2 13 14 6 8 9 lcdvadd
 |-  ( ph -> .+b = ( +g ` ( LDual ` U ) ) )
16 15 oveqd
 |-  ( ph -> ( F .+b G ) = ( F ( +g ` ( LDual ` U ) ) G ) )
17 16 fveq1d
 |-  ( ph -> ( ( F .+b G ) ` X ) = ( ( F ( +g ` ( LDual ` U ) ) G ) ` X ) )
18 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
19 1 2 9 dvhlmod
 |-  ( ph -> U e. LMod )
20 1 6 7 2 18 9 10 lcdvbaselfl
 |-  ( ph -> F e. ( LFnl ` U ) )
21 1 6 7 2 18 9 11 lcdvbaselfl
 |-  ( ph -> G e. ( LFnl ` U ) )
22 3 4 5 18 13 14 19 20 21 12 ldualvaddval
 |-  ( ph -> ( ( F ( +g ` ( LDual ` U ) ) G ) ` X ) = ( ( F ` X ) .+ ( G ` X ) ) )
23 17 22 eqtrd
 |-  ( ph -> ( ( F .+b G ) ` X ) = ( ( F ` X ) .+ ( G ` X ) ) )