| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdvaddval.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lcdvaddval.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lcdvaddval.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | lcdvaddval.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | lcdvaddval.a | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 6 |  | lcdvaddval.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | lcdvaddval.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 8 |  | lcdvaddval.p | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 9 |  | lcdvaddval.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | lcdvaddval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 11 |  | lcdvaddval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐷 ) | 
						
							| 12 |  | lcdvaddval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 13 |  | eqid | ⊢ ( LDual ‘ 𝑈 )  =  ( LDual ‘ 𝑈 ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ ( LDual ‘ 𝑈 ) )  =  ( +g ‘ ( LDual ‘ 𝑈 ) ) | 
						
							| 15 | 1 2 13 14 6 8 9 | lcdvadd | ⊢ ( 𝜑  →   ✚   =  ( +g ‘ ( LDual ‘ 𝑈 ) ) ) | 
						
							| 16 | 15 | oveqd | ⊢ ( 𝜑  →  ( 𝐹  ✚  𝐺 )  =  ( 𝐹 ( +g ‘ ( LDual ‘ 𝑈 ) ) 𝐺 ) ) | 
						
							| 17 | 16 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ✚  𝐺 ) ‘ 𝑋 )  =  ( ( 𝐹 ( +g ‘ ( LDual ‘ 𝑈 ) ) 𝐺 ) ‘ 𝑋 ) ) | 
						
							| 18 |  | eqid | ⊢ ( LFnl ‘ 𝑈 )  =  ( LFnl ‘ 𝑈 ) | 
						
							| 19 | 1 2 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 20 | 1 6 7 2 18 9 10 | lcdvbaselfl | ⊢ ( 𝜑  →  𝐹  ∈  ( LFnl ‘ 𝑈 ) ) | 
						
							| 21 | 1 6 7 2 18 9 11 | lcdvbaselfl | ⊢ ( 𝜑  →  𝐺  ∈  ( LFnl ‘ 𝑈 ) ) | 
						
							| 22 | 3 4 5 18 13 14 19 20 21 12 | ldualvaddval | ⊢ ( 𝜑  →  ( ( 𝐹 ( +g ‘ ( LDual ‘ 𝑈 ) ) 𝐺 ) ‘ 𝑋 )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 23 | 17 22 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹  ✚  𝐺 ) ‘ 𝑋 )  =  ( ( 𝐹 ‘ 𝑋 )  +  ( 𝐺 ‘ 𝑋 ) ) ) |