Metamath Proof Explorer


Theorem lcdvbasess

Description: The vector base set of the closed kernel dual space is a set of functionals. (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses lcdvbasess.h
|- H = ( LHyp ` K )
lcdvbasess.c
|- C = ( ( LCDual ` K ) ` W )
lcdvbasess.v
|- V = ( Base ` C )
lcdvbasess.u
|- U = ( ( DVecH ` K ) ` W )
lcdvbasess.f
|- F = ( LFnl ` U )
lcdvbasess.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lcdvbasess
|- ( ph -> V C_ F )

Proof

Step Hyp Ref Expression
1 lcdvbasess.h
 |-  H = ( LHyp ` K )
2 lcdvbasess.c
 |-  C = ( ( LCDual ` K ) ` W )
3 lcdvbasess.v
 |-  V = ( Base ` C )
4 lcdvbasess.u
 |-  U = ( ( DVecH ` K ) ` W )
5 lcdvbasess.f
 |-  F = ( LFnl ` U )
6 lcdvbasess.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
7 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
8 eqid
 |-  ( LKer ` U ) = ( LKer ` U )
9 eqid
 |-  { f e. F | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } = { f e. F | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) }
10 1 7 2 3 4 5 8 9 6 lcdvbase
 |-  ( ph -> V = { f e. F | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } )
11 ssrab2
 |-  { f e. F | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } C_ F
12 10 11 eqsstrdi
 |-  ( ph -> V C_ F )