Metamath Proof Explorer


Theorem lcdvsub

Description: The value of vector subtraction in the closed kernel dual space. (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses lcdvsub.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdvsub.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdvsub.s 𝑆 = ( Scalar ‘ 𝑈 )
lcdvsub.n 𝑁 = ( invg𝑆 )
lcdvsub.e 1 = ( 1r𝑆 )
lcdvsub.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdvsub.v 𝑉 = ( Base ‘ 𝐶 )
lcdvsub.p + = ( +g𝐶 )
lcdvsub.t · = ( ·𝑠𝐶 )
lcdvsub.m = ( -g𝐶 )
lcdvsub.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcdvsub.f ( 𝜑𝐹𝑉 )
lcdvsub.g ( 𝜑𝐺𝑉 )
Assertion lcdvsub ( 𝜑 → ( 𝐹 𝐺 ) = ( 𝐹 + ( ( 𝑁1 ) · 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 lcdvsub.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdvsub.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdvsub.s 𝑆 = ( Scalar ‘ 𝑈 )
4 lcdvsub.n 𝑁 = ( invg𝑆 )
5 lcdvsub.e 1 = ( 1r𝑆 )
6 lcdvsub.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 lcdvsub.v 𝑉 = ( Base ‘ 𝐶 )
8 lcdvsub.p + = ( +g𝐶 )
9 lcdvsub.t · = ( ·𝑠𝐶 )
10 lcdvsub.m = ( -g𝐶 )
11 lcdvsub.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 lcdvsub.f ( 𝜑𝐹𝑉 )
13 lcdvsub.g ( 𝜑𝐺𝑉 )
14 1 6 11 lcdlmod ( 𝜑𝐶 ∈ LMod )
15 eqid ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 )
16 eqid ( invg ‘ ( Scalar ‘ 𝐶 ) ) = ( invg ‘ ( Scalar ‘ 𝐶 ) )
17 eqid ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( Scalar ‘ 𝐶 ) )
18 7 8 10 15 9 16 17 lmodvsubval2 ( ( 𝐶 ∈ LMod ∧ 𝐹𝑉𝐺𝑉 ) → ( 𝐹 𝐺 ) = ( 𝐹 + ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) · 𝐺 ) ) )
19 14 12 13 18 syl3anc ( 𝜑 → ( 𝐹 𝐺 ) = ( 𝐹 + ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) · 𝐺 ) ) )
20 eqid ( oppr𝑆 ) = ( oppr𝑆 )
21 20 4 opprneg 𝑁 = ( invg ‘ ( oppr𝑆 ) )
22 1 2 3 20 6 15 11 lcdsca ( 𝜑 → ( Scalar ‘ 𝐶 ) = ( oppr𝑆 ) )
23 22 fveq2d ( 𝜑 → ( invg ‘ ( Scalar ‘ 𝐶 ) ) = ( invg ‘ ( oppr𝑆 ) ) )
24 21 23 eqtr4id ( 𝜑𝑁 = ( invg ‘ ( Scalar ‘ 𝐶 ) ) )
25 20 5 oppr1 1 = ( 1r ‘ ( oppr𝑆 ) )
26 22 fveq2d ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( oppr𝑆 ) ) )
27 25 26 eqtr4id ( 𝜑1 = ( 1r ‘ ( Scalar ‘ 𝐶 ) ) )
28 24 27 fveq12d ( 𝜑 → ( 𝑁1 ) = ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) )
29 28 oveq1d ( 𝜑 → ( ( 𝑁1 ) · 𝐺 ) = ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) · 𝐺 ) )
30 29 oveq2d ( 𝜑 → ( 𝐹 + ( ( 𝑁1 ) · 𝐺 ) ) = ( 𝐹 + ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) · 𝐺 ) ) )
31 19 30 eqtr4d ( 𝜑 → ( 𝐹 𝐺 ) = ( 𝐹 + ( ( 𝑁1 ) · 𝐺 ) ) )