| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdvsub.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lcdvsub.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lcdvsub.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | lcdvsub.n | ⊢ 𝑁  =  ( invg ‘ 𝑆 ) | 
						
							| 5 |  | lcdvsub.e | ⊢  1   =  ( 1r ‘ 𝑆 ) | 
						
							| 6 |  | lcdvsub.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | lcdvsub.v | ⊢ 𝑉  =  ( Base ‘ 𝐶 ) | 
						
							| 8 |  | lcdvsub.p | ⊢  +   =  ( +g ‘ 𝐶 ) | 
						
							| 9 |  | lcdvsub.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 10 |  | lcdvsub.m | ⊢  −   =  ( -g ‘ 𝐶 ) | 
						
							| 11 |  | lcdvsub.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | lcdvsub.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 13 |  | lcdvsub.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑉 ) | 
						
							| 14 | 1 6 11 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 15 |  | eqid | ⊢ ( Scalar ‘ 𝐶 )  =  ( Scalar ‘ 𝐶 ) | 
						
							| 16 |  | eqid | ⊢ ( invg ‘ ( Scalar ‘ 𝐶 ) )  =  ( invg ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝐶 ) )  =  ( 1r ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 18 | 7 8 10 15 9 16 17 | lmodvsubval2 | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑉 )  →  ( 𝐹  −  𝐺 )  =  ( 𝐹  +  ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) )  ·  𝐺 ) ) ) | 
						
							| 19 | 14 12 13 18 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  −  𝐺 )  =  ( 𝐹  +  ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) )  ·  𝐺 ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( oppr ‘ 𝑆 )  =  ( oppr ‘ 𝑆 ) | 
						
							| 21 | 20 4 | opprneg | ⊢ 𝑁  =  ( invg ‘ ( oppr ‘ 𝑆 ) ) | 
						
							| 22 | 1 2 3 20 6 15 11 | lcdsca | ⊢ ( 𝜑  →  ( Scalar ‘ 𝐶 )  =  ( oppr ‘ 𝑆 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝜑  →  ( invg ‘ ( Scalar ‘ 𝐶 ) )  =  ( invg ‘ ( oppr ‘ 𝑆 ) ) ) | 
						
							| 24 | 21 23 | eqtr4id | ⊢ ( 𝜑  →  𝑁  =  ( invg ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 25 | 20 5 | oppr1 | ⊢  1   =  ( 1r ‘ ( oppr ‘ 𝑆 ) ) | 
						
							| 26 | 22 | fveq2d | ⊢ ( 𝜑  →  ( 1r ‘ ( Scalar ‘ 𝐶 ) )  =  ( 1r ‘ ( oppr ‘ 𝑆 ) ) ) | 
						
							| 27 | 25 26 | eqtr4id | ⊢ ( 𝜑  →   1   =  ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 28 | 24 27 | fveq12d | ⊢ ( 𝜑  →  ( 𝑁 ‘  1  )  =  ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘  1  )  ·  𝐺 )  =  ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) )  ·  𝐺 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝜑  →  ( 𝐹  +  ( ( 𝑁 ‘  1  )  ·  𝐺 ) )  =  ( 𝐹  +  ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) )  ·  𝐺 ) ) ) | 
						
							| 31 | 19 30 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  −  𝐺 )  =  ( 𝐹  +  ( ( 𝑁 ‘  1  )  ·  𝐺 ) ) ) |