Step |
Hyp |
Ref |
Expression |
1 |
|
lcdvsub.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcdvsub.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcdvsub.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
4 |
|
lcdvsub.n |
⊢ 𝑁 = ( invg ‘ 𝑆 ) |
5 |
|
lcdvsub.e |
⊢ 1 = ( 1r ‘ 𝑆 ) |
6 |
|
lcdvsub.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
lcdvsub.v |
⊢ 𝑉 = ( Base ‘ 𝐶 ) |
8 |
|
lcdvsub.p |
⊢ + = ( +g ‘ 𝐶 ) |
9 |
|
lcdvsub.t |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
10 |
|
lcdvsub.m |
⊢ − = ( -g ‘ 𝐶 ) |
11 |
|
lcdvsub.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
lcdvsub.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
13 |
|
lcdvsub.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
14 |
1 6 11
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
16 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝐶 ) ) = ( invg ‘ ( Scalar ‘ 𝐶 ) ) |
17 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( Scalar ‘ 𝐶 ) ) |
18 |
7 8 10 15 9 16 17
|
lmodvsubval2 |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 − 𝐺 ) = ( 𝐹 + ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) · 𝐺 ) ) ) |
19 |
14 12 13 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 − 𝐺 ) = ( 𝐹 + ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) · 𝐺 ) ) ) |
20 |
|
eqid |
⊢ ( oppr ‘ 𝑆 ) = ( oppr ‘ 𝑆 ) |
21 |
20 4
|
opprneg |
⊢ 𝑁 = ( invg ‘ ( oppr ‘ 𝑆 ) ) |
22 |
1 2 3 20 6 15 11
|
lcdsca |
⊢ ( 𝜑 → ( Scalar ‘ 𝐶 ) = ( oppr ‘ 𝑆 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( invg ‘ ( Scalar ‘ 𝐶 ) ) = ( invg ‘ ( oppr ‘ 𝑆 ) ) ) |
24 |
21 23
|
eqtr4id |
⊢ ( 𝜑 → 𝑁 = ( invg ‘ ( Scalar ‘ 𝐶 ) ) ) |
25 |
20 5
|
oppr1 |
⊢ 1 = ( 1r ‘ ( oppr ‘ 𝑆 ) ) |
26 |
22
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( oppr ‘ 𝑆 ) ) ) |
27 |
25 26
|
eqtr4id |
⊢ ( 𝜑 → 1 = ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) |
28 |
24 27
|
fveq12d |
⊢ ( 𝜑 → ( 𝑁 ‘ 1 ) = ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ) |
29 |
28
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 1 ) · 𝐺 ) = ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) · 𝐺 ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( 𝐹 + ( ( 𝑁 ‘ 1 ) · 𝐺 ) ) = ( 𝐹 + ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) · 𝐺 ) ) ) |
31 |
19 30
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 − 𝐺 ) = ( 𝐹 + ( ( 𝑁 ‘ 1 ) · 𝐺 ) ) ) |