Metamath Proof Explorer


Theorem lcdvsubval

Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses lcdvsubval.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdvsubval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdvsubval.v 𝑉 = ( Base ‘ 𝑈 )
lcdvsubval.r 𝑅 = ( Scalar ‘ 𝑈 )
lcdvsubval.s 𝑆 = ( -g𝑅 )
lcdvsubval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdvsubval.d 𝐷 = ( Base ‘ 𝐶 )
lcdvsubval.m = ( -g𝐶 )
lcdvsubval.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcdvsubval.f ( 𝜑𝐹𝐷 )
lcdvsubval.g ( 𝜑𝐺𝐷 )
lcdvsubval.x ( 𝜑𝑋𝑉 )
Assertion lcdvsubval ( 𝜑 → ( ( 𝐹 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝑋 ) 𝑆 ( 𝐺𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 lcdvsubval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdvsubval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdvsubval.v 𝑉 = ( Base ‘ 𝑈 )
4 lcdvsubval.r 𝑅 = ( Scalar ‘ 𝑈 )
5 lcdvsubval.s 𝑆 = ( -g𝑅 )
6 lcdvsubval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 lcdvsubval.d 𝐷 = ( Base ‘ 𝐶 )
8 lcdvsubval.m = ( -g𝐶 )
9 lcdvsubval.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcdvsubval.f ( 𝜑𝐹𝐷 )
11 lcdvsubval.g ( 𝜑𝐺𝐷 )
12 lcdvsubval.x ( 𝜑𝑋𝑉 )
13 1 6 9 lcdlmod ( 𝜑𝐶 ∈ LMod )
14 eqid ( +g𝐶 ) = ( +g𝐶 )
15 eqid ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 )
16 eqid ( ·𝑠𝐶 ) = ( ·𝑠𝐶 )
17 eqid ( invg ‘ ( Scalar ‘ 𝐶 ) ) = ( invg ‘ ( Scalar ‘ 𝐶 ) )
18 eqid ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( Scalar ‘ 𝐶 ) )
19 7 14 8 15 16 17 18 lmodvsubval2 ( ( 𝐶 ∈ LMod ∧ 𝐹𝐷𝐺𝐷 ) → ( 𝐹 𝐺 ) = ( 𝐹 ( +g𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) ) )
20 13 10 11 19 syl3anc ( 𝜑 → ( 𝐹 𝐺 ) = ( 𝐹 ( +g𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) ) )
21 20 fveq1d ( 𝜑 → ( ( 𝐹 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ( +g𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) ) ‘ 𝑋 ) )
22 eqid ( +g𝑅 ) = ( +g𝑅 )
23 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
24 15 lmodfgrp ( 𝐶 ∈ LMod → ( Scalar ‘ 𝐶 ) ∈ Grp )
25 13 24 syl ( 𝜑 → ( Scalar ‘ 𝐶 ) ∈ Grp )
26 15 lmodring ( 𝐶 ∈ LMod → ( Scalar ‘ 𝐶 ) ∈ Ring )
27 13 26 syl ( 𝜑 → ( Scalar ‘ 𝐶 ) ∈ Ring )
28 eqid ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) )
29 28 18 ringidcl ( ( Scalar ‘ 𝐶 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
30 27 29 syl ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
31 28 17 grpinvcl ( ( ( Scalar ‘ 𝐶 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
32 25 30 31 syl2anc ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
33 1 2 4 23 6 15 28 9 lcdsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ 𝑅 ) )
34 32 33 eleqtrd ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ ( Base ‘ 𝑅 ) )
35 1 2 4 23 6 7 16 9 34 11 lcdvscl ( 𝜑 → ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) ∈ 𝐷 )
36 1 2 3 4 22 6 7 14 9 10 35 12 lcdvaddval ( 𝜑 → ( ( 𝐹 ( +g𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( 𝐹𝑋 ) ( +g𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) ‘ 𝑋 ) ) )
37 eqid ( invg𝑅 ) = ( invg𝑅 )
38 1 2 4 37 6 15 17 9 lcdneg ( 𝜑 → ( invg ‘ ( Scalar ‘ 𝐶 ) ) = ( invg𝑅 ) )
39 eqid ( 1r𝑅 ) = ( 1r𝑅 )
40 1 2 4 39 6 15 18 9 lcd1 ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r𝑅 ) )
41 38 40 fveq12d ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) = ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) )
42 41 oveq1d ( 𝜑 → ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) = ( ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) ( ·𝑠𝐶 ) 𝐺 ) )
43 42 fveq1d ( 𝜑 → ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) ‘ 𝑋 ) = ( ( ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) ( ·𝑠𝐶 ) 𝐺 ) ‘ 𝑋 ) )
44 eqid ( .r𝑅 ) = ( .r𝑅 )
45 1 2 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
46 4 lmodring ( 𝑈 ∈ LMod → 𝑅 ∈ Ring )
47 45 46 syl ( 𝜑𝑅 ∈ Ring )
48 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
49 47 48 syl ( 𝜑𝑅 ∈ Grp )
50 4 23 39 lmod1cl ( 𝑈 ∈ LMod → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
51 45 50 syl ( 𝜑 → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
52 23 37 grpinvcl ( ( 𝑅 ∈ Grp ∧ ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ( Base ‘ 𝑅 ) )
53 49 51 52 syl2anc ( 𝜑 → ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ( Base ‘ 𝑅 ) )
54 1 2 3 4 23 44 6 7 16 9 53 11 12 lcdvsval ( 𝜑 → ( ( ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) ( ·𝑠𝐶 ) 𝐺 ) ‘ 𝑋 ) = ( ( 𝐺𝑋 ) ( .r𝑅 ) ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) ) )
55 1 2 3 4 23 6 7 9 11 12 lcdvbasecl ( 𝜑 → ( 𝐺𝑋 ) ∈ ( Base ‘ 𝑅 ) )
56 23 44 39 37 47 55 rngnegr ( 𝜑 → ( ( 𝐺𝑋 ) ( .r𝑅 ) ( ( invg𝑅 ) ‘ ( 1r𝑅 ) ) ) = ( ( invg𝑅 ) ‘ ( 𝐺𝑋 ) ) )
57 43 54 56 3eqtrd ( 𝜑 → ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) ‘ 𝑋 ) = ( ( invg𝑅 ) ‘ ( 𝐺𝑋 ) ) )
58 57 oveq2d ( 𝜑 → ( ( 𝐹𝑋 ) ( +g𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) ‘ 𝑋 ) ) = ( ( 𝐹𝑋 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝐺𝑋 ) ) ) )
59 1 2 3 4 23 6 7 9 10 12 lcdvbasecl ( 𝜑 → ( 𝐹𝑋 ) ∈ ( Base ‘ 𝑅 ) )
60 23 22 37 5 grpsubval ( ( ( 𝐹𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹𝑋 ) 𝑆 ( 𝐺𝑋 ) ) = ( ( 𝐹𝑋 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝐺𝑋 ) ) ) )
61 59 55 60 syl2anc ( 𝜑 → ( ( 𝐹𝑋 ) 𝑆 ( 𝐺𝑋 ) ) = ( ( 𝐹𝑋 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝐺𝑋 ) ) ) )
62 58 61 eqtr4d ( 𝜑 → ( ( 𝐹𝑋 ) ( +g𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠𝐶 ) 𝐺 ) ‘ 𝑋 ) ) = ( ( 𝐹𝑋 ) 𝑆 ( 𝐺𝑋 ) ) )
63 21 36 62 3eqtrd ( 𝜑 → ( ( 𝐹 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹𝑋 ) 𝑆 ( 𝐺𝑋 ) ) )