Step |
Hyp |
Ref |
Expression |
1 |
|
lcdvsubval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcdvsubval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcdvsubval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
lcdvsubval.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
5 |
|
lcdvsubval.s |
⊢ 𝑆 = ( -g ‘ 𝑅 ) |
6 |
|
lcdvsubval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
lcdvsubval.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
8 |
|
lcdvsubval.m |
⊢ − = ( -g ‘ 𝐶 ) |
9 |
|
lcdvsubval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcdvsubval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
11 |
|
lcdvsubval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
12 |
|
lcdvsubval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
13 |
1 6 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
16 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐶 ) = ( ·𝑠 ‘ 𝐶 ) |
17 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝐶 ) ) = ( invg ‘ ( Scalar ‘ 𝐶 ) ) |
18 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( Scalar ‘ 𝐶 ) ) |
19 |
7 14 8 15 16 17 18
|
lmodvsubval2 |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ) ) |
20 |
13 10 11 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ) ) |
21 |
20
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 − 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ) ‘ 𝑋 ) ) |
22 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
24 |
15
|
lmodfgrp |
⊢ ( 𝐶 ∈ LMod → ( Scalar ‘ 𝐶 ) ∈ Grp ) |
25 |
13 24
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝐶 ) ∈ Grp ) |
26 |
15
|
lmodring |
⊢ ( 𝐶 ∈ LMod → ( Scalar ‘ 𝐶 ) ∈ Ring ) |
27 |
13 26
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝐶 ) ∈ Ring ) |
28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
29 |
28 18
|
ringidcl |
⊢ ( ( Scalar ‘ 𝐶 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
30 |
27 29
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
31 |
28 17
|
grpinvcl |
⊢ ( ( ( Scalar ‘ 𝐶 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
32 |
25 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
33 |
1 2 4 23 6 15 28 9
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ 𝑅 ) ) |
34 |
32 33
|
eleqtrd |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
35 |
1 2 4 23 6 7 16 9 34 11
|
lcdvscl |
⊢ ( 𝜑 → ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ∈ 𝐷 ) |
36 |
1 2 3 4 22 6 7 14 9 10 35 12
|
lcdvaddval |
⊢ ( 𝜑 → ( ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) ) ) |
37 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
38 |
1 2 4 37 6 15 17 9
|
lcdneg |
⊢ ( 𝜑 → ( invg ‘ ( Scalar ‘ 𝐶 ) ) = ( invg ‘ 𝑅 ) ) |
39 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
40 |
1 2 4 39 6 15 18 9
|
lcd1 |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ 𝑅 ) ) |
41 |
38 40
|
fveq12d |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
42 |
41
|
oveq1d |
⊢ ( 𝜑 → ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) = ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ) |
43 |
42
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) = ( ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) ) |
44 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
45 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
46 |
4
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑅 ∈ Ring ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
48 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
50 |
4 23 39
|
lmod1cl |
⊢ ( 𝑈 ∈ LMod → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
51 |
45 50
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
52 |
23 37
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
53 |
49 51 52
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
54 |
1 2 3 4 23 44 6 7 16 9 53 11 12
|
lcdvsval |
⊢ ( 𝜑 → ( ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
55 |
1 2 3 4 23 6 7 9 11 12
|
lcdvbasecl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
56 |
23 44 39 37 47 55
|
rngnegr |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
57 |
43 54 56
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ) |
59 |
1 2 3 4 23 6 7 9 10 12
|
lcdvbasecl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
60 |
23 22 37 5
|
grpsubval |
⊢ ( ( ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ) |
61 |
59 55 60
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ) |
62 |
58 61
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) ) ) |
63 |
21 36 62
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 − 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) ) ) |