| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdvsubval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcdvsubval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcdvsubval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
lcdvsubval.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 5 |
|
lcdvsubval.s |
⊢ 𝑆 = ( -g ‘ 𝑅 ) |
| 6 |
|
lcdvsubval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
lcdvsubval.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 8 |
|
lcdvsubval.m |
⊢ − = ( -g ‘ 𝐶 ) |
| 9 |
|
lcdvsubval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lcdvsubval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 11 |
|
lcdvsubval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
| 12 |
|
lcdvsubval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 13 |
1 6 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
| 15 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
| 16 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐶 ) = ( ·𝑠 ‘ 𝐶 ) |
| 17 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝐶 ) ) = ( invg ‘ ( Scalar ‘ 𝐶 ) ) |
| 18 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( Scalar ‘ 𝐶 ) ) |
| 19 |
7 14 8 15 16 17 18
|
lmodvsubval2 |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ) ) |
| 20 |
13 10 11 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ) ) |
| 21 |
20
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 − 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ) ‘ 𝑋 ) ) |
| 22 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 24 |
15
|
lmodfgrp |
⊢ ( 𝐶 ∈ LMod → ( Scalar ‘ 𝐶 ) ∈ Grp ) |
| 25 |
13 24
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝐶 ) ∈ Grp ) |
| 26 |
15
|
lmodring |
⊢ ( 𝐶 ∈ LMod → ( Scalar ‘ 𝐶 ) ∈ Ring ) |
| 27 |
13 26
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝐶 ) ∈ Ring ) |
| 28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
| 29 |
28 18
|
ringidcl |
⊢ ( ( Scalar ‘ 𝐶 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 30 |
27 29
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 31 |
28 17
|
grpinvcl |
⊢ ( ( ( Scalar ‘ 𝐶 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 32 |
25 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 33 |
1 2 4 23 6 15 28 9
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ 𝑅 ) ) |
| 34 |
32 33
|
eleqtrd |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 35 |
1 2 4 23 6 7 16 9 34 11
|
lcdvscl |
⊢ ( 𝜑 → ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ∈ 𝐷 ) |
| 36 |
1 2 3 4 22 6 7 14 9 10 35 12
|
lcdvaddval |
⊢ ( 𝜑 → ( ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) ) ) |
| 37 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 38 |
1 2 4 37 6 15 17 9
|
lcdneg |
⊢ ( 𝜑 → ( invg ‘ ( Scalar ‘ 𝐶 ) ) = ( invg ‘ 𝑅 ) ) |
| 39 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 40 |
1 2 4 39 6 15 18 9
|
lcd1 |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ 𝑅 ) ) |
| 41 |
38 40
|
fveq12d |
⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( 𝜑 → ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) = ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ) |
| 43 |
42
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) = ( ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) ) |
| 44 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 45 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 46 |
4
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑅 ∈ Ring ) |
| 47 |
45 46
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 48 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 49 |
47 48
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 50 |
4 23 39
|
lmod1cl |
⊢ ( 𝑈 ∈ LMod → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 51 |
45 50
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 52 |
23 37
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 53 |
49 51 52
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 54 |
1 2 3 4 23 44 6 7 16 9 53 11 12
|
lcdvsval |
⊢ ( 𝜑 → ( ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 55 |
1 2 3 4 23 6 7 9 11 12
|
lcdvbasecl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 56 |
23 44 39 37 47 55
|
ringnegr |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 57 |
43 54 56
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 58 |
57
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ) |
| 59 |
1 2 3 4 23 6 7 9 10 12
|
lcdvbasecl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 60 |
23 22 37 5
|
grpsubval |
⊢ ( ( ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ) |
| 61 |
59 55 60
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ) |
| 62 |
58 61
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) ( ·𝑠 ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) ) ) |
| 63 |
21 36 62
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 − 𝐺 ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) ) ) |