| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdvsubval.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lcdvsubval.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lcdvsubval.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | lcdvsubval.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | lcdvsubval.s | ⊢ 𝑆  =  ( -g ‘ 𝑅 ) | 
						
							| 6 |  | lcdvsubval.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | lcdvsubval.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 8 |  | lcdvsubval.m | ⊢  −   =  ( -g ‘ 𝐶 ) | 
						
							| 9 |  | lcdvsubval.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | lcdvsubval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 11 |  | lcdvsubval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐷 ) | 
						
							| 12 |  | lcdvsubval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 13 | 1 6 9 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝐶 )  =  ( +g ‘ 𝐶 ) | 
						
							| 15 |  | eqid | ⊢ ( Scalar ‘ 𝐶 )  =  ( Scalar ‘ 𝐶 ) | 
						
							| 16 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐶 )  =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 17 |  | eqid | ⊢ ( invg ‘ ( Scalar ‘ 𝐶 ) )  =  ( invg ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 18 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝐶 ) )  =  ( 1r ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 19 | 7 14 8 15 16 17 18 | lmodvsubval2 | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝐹  ∈  𝐷  ∧  𝐺  ∈  𝐷 )  →  ( 𝐹  −  𝐺 )  =  ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ) ) | 
						
							| 20 | 13 10 11 19 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  −  𝐺 )  =  ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ) ) | 
						
							| 21 | 20 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  −  𝐺 ) ‘ 𝑋 )  =  ( ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ) ‘ 𝑋 ) ) | 
						
							| 22 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 24 | 15 | lmodfgrp | ⊢ ( 𝐶  ∈  LMod  →  ( Scalar ‘ 𝐶 )  ∈  Grp ) | 
						
							| 25 | 13 24 | syl | ⊢ ( 𝜑  →  ( Scalar ‘ 𝐶 )  ∈  Grp ) | 
						
							| 26 | 15 | lmodring | ⊢ ( 𝐶  ∈  LMod  →  ( Scalar ‘ 𝐶 )  ∈  Ring ) | 
						
							| 27 | 13 26 | syl | ⊢ ( 𝜑  →  ( Scalar ‘ 𝐶 )  ∈  Ring ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 29 | 28 18 | ringidcl | ⊢ ( ( Scalar ‘ 𝐶 )  ∈  Ring  →  ( 1r ‘ ( Scalar ‘ 𝐶 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 30 | 27 29 | syl | ⊢ ( 𝜑  →  ( 1r ‘ ( Scalar ‘ 𝐶 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 31 | 28 17 | grpinvcl | ⊢ ( ( ( Scalar ‘ 𝐶 )  ∈  Grp  ∧  ( 1r ‘ ( Scalar ‘ 𝐶 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) )  →  ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 32 | 25 30 31 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 33 | 1 2 4 23 6 15 28 9 | lcdsbase | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 34 | 32 33 | eleqtrd | ⊢ ( 𝜑  →  ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 35 | 1 2 4 23 6 7 16 9 34 11 | lcdvscl | ⊢ ( 𝜑  →  ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 )  ∈  𝐷 ) | 
						
							| 36 | 1 2 3 4 22 6 7 14 9 10 35 12 | lcdvaddval | ⊢ ( 𝜑  →  ( ( 𝐹 ( +g ‘ 𝐶 ) ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ) ‘ 𝑋 )  =  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( invg ‘ 𝑅 )  =  ( invg ‘ 𝑅 ) | 
						
							| 38 | 1 2 4 37 6 15 17 9 | lcdneg | ⊢ ( 𝜑  →  ( invg ‘ ( Scalar ‘ 𝐶 ) )  =  ( invg ‘ 𝑅 ) ) | 
						
							| 39 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 40 | 1 2 4 39 6 15 18 9 | lcd1 | ⊢ ( 𝜑  →  ( 1r ‘ ( Scalar ‘ 𝐶 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 41 | 38 40 | fveq12d | ⊢ ( 𝜑  →  ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) )  =  ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( 𝜑  →  ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 )  =  ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ) | 
						
							| 43 | 42 | fveq1d | ⊢ ( 𝜑  →  ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 )  =  ( ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) ) | 
						
							| 44 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 45 | 1 2 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 46 | 4 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝑅  ∈  Ring ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 48 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 50 | 4 23 39 | lmod1cl | ⊢ ( 𝑈  ∈  LMod  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 51 | 45 50 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 52 | 23 37 | grpinvcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 53 | 49 51 52 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 54 | 1 2 3 4 23 44 6 7 16 9 53 11 12 | lcdvsval | ⊢ ( 𝜑  →  ( ( ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 )  =  ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) | 
						
							| 55 | 1 2 3 4 23 6 7 9 11 12 | lcdvbasecl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 56 | 23 44 39 37 47 55 | ringnegr | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) )  =  ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 57 | 43 54 56 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 )  =  ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ) | 
						
							| 59 | 1 2 3 4 23 6 7 9 10 12 | lcdvbasecl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 60 | 23 22 37 5 | grpsubval | ⊢ ( ( ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐺 ‘ 𝑋 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ) | 
						
							| 61 | 59 55 60 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ) | 
						
							| 62 | 58 61 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( ( invg ‘ ( Scalar ‘ 𝐶 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) (  ·𝑠  ‘ 𝐶 ) 𝐺 ) ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 63 | 21 36 62 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹  −  𝐺 ) ‘ 𝑋 )  =  ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝐺 ‘ 𝑋 ) ) ) |